Do you want to publish a course? Click here

On Markov and Bernstein inequalities in weighted for real polynomials

دراسة متراجحة ماركوف –بيرنشتين التّكاملية في الفضاء الموزّن لكثيرات الحدود الحقيقية

1026   0   25   0 ( 0 )
 Publication date 2015
  fields Mathematics
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

In this research , we studied Markov -Bernstein inequalities for polynomials of degree at most with weight function in space on ,then we studied Markov -Bernstein inequalities for trigonometric polynomials .After that, we obtained the Markov –Bernstein inequalities for algebraicpolynomials of degree with weight function .


Artificial intelligence review:
Research summary
في هذا البحث، قام الباحثون بدراسة متراجحات ماركوف – بيرنشتين التكاملية لكثيرات الحدود الجبرية من الدرجة 2m على الأكثر مع دالة الوزن (1 + x^2) في فضاء Lp على المجال [0, +∞[. كما تم دراسة متراجحات ماركوف – بيرنشتين لكثيرات الحدود المثلثية. ونتيجة لذلك، توصلوا إلى متراجحات ماركوف – بيرنشتين لكثيرات الحدود الجبرية من الدرجة m مع دالة الوزن (1 + x^2) على نفس المجال. تهدف هذه الدراسة إلى تقديم متراجحات تكاملية يمكن استخدامها في العديد من مسائل التحليل الرياضي، وخاصة في نظرية التقريب. تم استخدام طرق رياضية متنوعة لتحقيق النتائج المطلوبة، وتم تقديم تعريفات ومبرهنات تدعم النتائج المستخلصة.
Critical review
دراسة نقدية: على الرغم من أن البحث يقدم مساهمات قيمة في مجال التحليل الرياضي، إلا أنه يفتقر إلى تطبيقات عملية واضحة يمكن أن تساعد في فهم أهمية النتائج في سياقات حقيقية. كما أن الدراسة تركز بشكل كبير على الجانب النظري دون تقديم أمثلة تطبيقية توضح كيفية استخدام المتراجحات في مسائل حقيقية. بالإضافة إلى ذلك، كان من الممكن تحسين العرض من خلال تقديم رسوم بيانية أو جداول توضيحية لتسهيل فهم النتائج.
Questions related to the research
  1. ما هي الأهمية الرئيسية لهذا البحث؟

    تكمن أهمية البحث في استخدام نتائجه في العديد من مسائل التحليل الرياضي، وخاصة في مسائل نظرية التقريب.

  2. ما هي الدوال التي تم دراستها في هذا البحث؟

    تم دراسة كثيرات الحدود الجبرية والمثلثية مع دوال الوزن المختلفة.

  3. ما هي الفضاءات التي تم استخدام المتراجحات فيها؟

    تم استخدام المتراجحات في فضاء Lp الموزّن.

  4. ما هي التوصيات التي قدمها الباحثون في نهاية الدراسة؟

    أوصى الباحثون بإجراء دراسات إضافية على فضاءات موزّنة أخرى مثل فضاء أورليتش.


References used
GUVEN,A; ISRAFILOV,D-M . Multiplier theorems in weighted Smirnov spaces. J.Korean Math soc,45,No6,2008,pp.1535-1548
T.Kilgore,Interpolation properties of polynomials of degree at most 2 weighted by ,East J.Approx.7(2001),no.1,9-25
T.Kilgore,Markov and Bernstein inequalities in for some weighted algebraic and trigonometric polynomails ,Journal of Inequalities and Application .4(2005),413-421
rate research

Read More

Will be proved the sharp inequality Where for function in space second degree continuity module will be proved the inequality : for any and will be proved the theory : for any natural number we obtain
Event driven embedded systems are one of the essential structures of heterogeneous embedded systems. The difference behavior of hardware and software motivates the usage of high-level system design approaches such as Hardware Software co-design Model . The objective of this paper is to obtain a new Co-design model for discrete-events embedded systems based on Markov chains, and then using the heterogeneous modeling by composing the discrete-times model within discrete-events model to apply it on anti‐lock braking system (ABS). To achieve the model, we use Ptolemy II which is a Java-based software framework developed as part of the Ptolemy Project by University of California, Berkeley. The importance of this paper is to be the kernel for heterogeneous co-design modeling for heterogeneous embedded systems in future works.
We performed in this research forecast in the direction of the index numbers for consumer prices for ( food- clothes and shoes – education -health- transportation communications - housing water, electricity, gas and other fuel oils), by using Mark ov chains in estimating with dependence on monthly data were taken from the central bureau of statistics in Syria during the period (1/1/2010 , 31/12/2011) , So results were analyzed by calculating the vector of states probabilities in the moment 0 t and using it with matrix of transition probabilities states transition probability for forecasting in the vector of states probabilities on the long and short range for knowing the direction at which the index numbers may behave in the future. The most important results of the study were instability of the beam of the transition probabilities (high low stability) during the prediction period, as well as for the matrix of transition probabilities.
Abstract We study controllable text summarization, which allows users to gain control on a particular attribute (e.g., length limit) of the generated summaries. In this work, we propose a novel training framework based on Constrained Markov Decision Process (CMDP), which conveniently includes a reward function along with a set of constraints, to facilitate better summarization control. The reward function encourages the generation to resemble the human-written reference, while the constraints are used to explicitly prevent the generated summaries from violating user-imposed requirements. Our framework can be applied to control important attributes of summarization, including length, covered entities, and abstractiveness, as we devise specific constraints for each of these aspects. Extensive experiments on popular benchmarks show that our CMDP framework helps generate informative summaries while complying with a given attribute's requirement.1
Recent state-of-the-art approaches in open-domain dialogue include training end-to-end deep-learning models to learn various conversational features like emotional content of response, symbolic transitions of dialogue contexts in a knowledge graph an d persona of the agent and the user, among others. While neural models have shown reasonable results, modelling the cognitive processes that humans use when conversing with each other may improve the agent's quality of responses. A key element of natural conversation is to tailor one's response such that it accounts for concepts that the speaker and listener may or may not know and the contextual relevance of all prior concepts used in conversation. We show that a rich representation and explicit modeling of these psychological processes can improve predictions made by existing neural network models. In this work, we propose a novel probabilistic approach using Markov Random Fields (MRF) to augment existing deep-learning methods for improved next utterance prediction. Using human and automatic evaluations, we show that our augmentation approach significantly improves the performance of existing state-of-the-art retrieval models for open-domain conversational agents.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا