Do you want to publish a course? Click here

MRF-Chat: Improving Dialogue with Markov Random Fields

MRF-Chat: تحسين الحوار مع ماركوف لحقول عشوائية

310   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Recent state-of-the-art approaches in open-domain dialogue include training end-to-end deep-learning models to learn various conversational features like emotional content of response, symbolic transitions of dialogue contexts in a knowledge graph and persona of the agent and the user, among others. While neural models have shown reasonable results, modelling the cognitive processes that humans use when conversing with each other may improve the agent's quality of responses. A key element of natural conversation is to tailor one's response such that it accounts for concepts that the speaker and listener may or may not know and the contextual relevance of all prior concepts used in conversation. We show that a rich representation and explicit modeling of these psychological processes can improve predictions made by existing neural network models. In this work, we propose a novel probabilistic approach using Markov Random Fields (MRF) to augment existing deep-learning methods for improved next utterance prediction. Using human and automatic evaluations, we show that our augmentation approach significantly improves the performance of existing state-of-the-art retrieval models for open-domain conversational agents.



References used
https://aclanthology.org/
rate research

Read More

Abstract We study controllable text summarization, which allows users to gain control on a particular attribute (e.g., length limit) of the generated summaries. In this work, we propose a novel training framework based on Constrained Markov Decision Process (CMDP), which conveniently includes a reward function along with a set of constraints, to facilitate better summarization control. The reward function encourages the generation to resemble the human-written reference, while the constraints are used to explicitly prevent the generated summaries from violating user-imposed requirements. Our framework can be applied to control important attributes of summarization, including length, covered entities, and abstractiveness, as we devise specific constraints for each of these aspects. Extensive experiments on popular benchmarks show that our CMDP framework helps generate informative summaries while complying with a given attribute's requirement.1
Dialogue topic segmentation is critical in several dialogue modeling problems. However, popular unsupervised approaches only exploit surface features in assessing topical coherence among utterances. In this work, we address this limitation by leverag ing supervisory signals from the utterance-pair coherence scoring task. First, we present a simple yet effective strategy to generate a training corpus for utterance-pair coherence scoring. Then, we train a BERT-based neural utterance-pair coherence model with the obtained training corpus. Finally, such model is used to measure the topical relevance between utterances, acting as the basis of the segmentation inference. Experiments on three public datasets in English and Chinese demonstrate that our proposal outperforms the state-of-the-art baselines.
This paper proposes a taxonomy of errors in chat-oriented dialogue systems. Previously, two taxonomies were proposed; one is theory-driven and the other data-driven. The former suffers from the fact that dialogue theories for human conversation are o ften not appropriate for categorizing errors made by chat-oriented dialogue systems. The latter has limitations in that it can only cope with errors of systems for which we have data. This paper integrates these two taxonomies to create a comprehensive taxonomy of errors in chat-oriented dialogue systems. We found that, with our integrated taxonomy, errors can be reliably annotated with a higher Fleiss' kappa compared with the previously proposed taxonomies.
In this research paper, we study geodesic mappings of gravitation fields . The mapping listed are considered, on the one hand, a generalization of aftomorfizm of movement and harmonic mappings, and on the other hand the practical mappings in the theory of relativity .
Dialogue state tracking models play an important role in a task-oriented dialogue system. However, most of them model the slot types conditionally independently given the input. We discover that it may cause the model to be confused by slot types tha t share the same data type. To mitigate this issue, we propose TripPy-MRF and TripPy-LSTM that models the slots jointly. Our results show that they are able to alleviate the confusion mentioned above, and they push the state-of-the-art on dataset MultiWoz 2.1 from 58.7 to 61.3.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا