ندرس في هذا البحث فضاء الطاقة الموافق لمؤثر هرميت التفاضلي , و نبين أنه فضاء هيلبرت مع جداء داخلي مناسب، و هو فضاء جزئي من الفضاء .
ثم ندرس قوى هذا المؤثر , حيث نشكل بالاعتماد على النظرية الطيفية , و نبين أن المؤثر له خواص مشابهة للمؤثر من أجل عدد حقيقي موجب s.
لذلك يمكن تشكيل فضاءات هيلبرت جديدة , هي بنفس الوقت فضاءات الطاقة لقوى المؤثر , و هي من نمط فضاءات سوبوليڤ.
In this paper we study the energy space of the Hermite differential operator
and prove that it is a Hilbert space with a suitable inner product. Then we construct the powers of , denoted by , by using the spectral theory . We will see that has similar properties as for real numbers s > o, therefore we can construct new Hilbert spaces which are the energy spaces of powers of . They are Sobolev spaces.
Artificial intelligence review:
Research summary
يتناول البحث دراسة فضاء الطاقة لمؤثر هرميت التفاضلي H = -Δ + |x|² ويثبت أنه فضاء هيلبرت مع جداء داخلي مناسب. يتم بناء قوى المؤثر H باستخدام النظرية الطيفية، ويظهر أن HS يمتلك خصائص مشابهة لـ H للأعداد الحقيقية s > 0. يمكن بناء فضاءات هيلبرت جديدة W2H(R) وهي فضاءات طاقة لقوى المؤثر وتعتبر فضاءات سوبوليف. يمكن تعميم هذه الفضاءات إلى WS,H(R) للأعداد الحقيقية 1 ≤ p < ∞. البحث يعتمد على الخواص الطيفية لمؤثر هرميت ويستخدم توابع هرميت الخاصة في فضاءات متعددة مثل Lp(R2) وS'(R) وS(R). النتائج تشير إلى أن فضاء الطاقة لمؤثر هرميت هو فضاء هيلبرت تام مع جداء داخلي مناسب، ويمكن استخدام هذه النتائج في تطبيقات فيزيائية ورياضية متعددة.
Critical review
دراسة نقدية: بالرغم من أن البحث يقدم مساهمات قيمة في دراسة فضاءات الطاقة لمؤثر هرميت، إلا أنه يمكن توجيه بعض الانتقادات البنّاءة. أولاً، البحث يعتمد بشكل كبير على الخواص الطيفية دون تقديم تطبيقات عملية واضحة في الفيزياء أو الرياضيات التطبيقية، مما قد يقلل من فائدة النتائج في التطبيقات العملية. ثانياً، كان من الممكن توسيع الدراسة لتشمل مؤثرات أخرى مشابهة مثل مؤثر لاجير أو لوجاندر، مما يعزز من شمولية البحث. ثالثاً، الاعتماد الكبير على المراجع الأجنبية دون تقديم أمثلة تطبيقية محلية قد يجعل البحث أقل ارتباطاً بالواقع الأكاديمي المحلي.
Questions related to the research
-
ما هو الهدف الرئيسي من البحث؟
الهدف الرئيسي من البحث هو دراسة فضاء الطاقة لمؤثر هرميت التفاضلي وإثبات أنه فضاء هيلبرت مع جداء داخلي مناسب، بالإضافة إلى بناء فضاءات هيلبرت جديدة تعتمد على قوى المؤثر ودراسة خصائصها.
-
ما هي الفضاءات التي تم دراستها في البحث؟
تم دراسة فضاءات هيلبرت وفضاءات سوبوليف المرتبطة بمؤثر هرميت، بالإضافة إلى فضاءات Lp(R2) وS'(R) وS(R).
-
ما هي التطبيقات المحتملة للنتائج التي توصل إليها البحث؟
التطبيقات المحتملة تشمل الفيزياء الرياضية، خاصة في دراسة المعادلات التفاضلية الجزئية مثل معادلة شرودينجر ومعادلة انتشار الحرارة، بالإضافة إلى تطبيقات في الميكانيكا الكمية.
-
ما هي الانتقادات التي يمكن توجيهها للبحث؟
الانتقادات تشمل الاعتماد الكبير على النظرية الطيفية دون تقديم تطبيقات عملية واضحة، وعدم شمولية الدراسة لمؤثرات أخرى مشابهة، والاعتماد الكبير على المراجع الأجنبية دون تقديم أمثلة تطبيقية محلية.
References used
NANKDAKUMARAN, A.K. ; RATNAKUMAR,P.K.Schrödinger equation and the oscillatory semigroup for the Hermite operator.2009
SJOGREN, P. ; TORREA,J.L. On the boundary convergence of solutions to the Hermite – Schrödinger equation. Duke Math , J.55, 1987, 699 -715
BONJIOANNI, B.;ROGERS, K.M . Regularity of the Schrödinger equation for the Harmonic oscillator.2008
The aim of this paper is to study and generalize some results that related by the complete continuity of the urysohn.s operator of two variables on a set on which a lebesgue meagure is defined and study uniform convergence sequence of the urysohn .s.
The aim of this paper is to study and generalize some results that related by compactness and continuity of Urysohn.S operator of two variables on a set on which a lebesgue measure is defined and using the norm that achieved some certain con
In this paper, we find distributional solutions of boundary value
problems in Sobolev spaces. This solution will be given as Fourier
series with respect to the Eigen functions of a positive definite
operator and its square roots.
Then, we obtain solutions of such problems of a real order.
We define Riemann – Banach space and the space conformal to
the Euclidean planer space, then we create The necessary and
sufficient conditions in order to be Riemann – Banach
space conformal to the Euclidean space, then we prove that
constant- curvature Riemann – Banach spaces which have
are conformal to the Euclidean space. Finally,
we create locally, the measurement in constant curvature
Riemann –Banach spaces.
The aim of this paper is to discuss the necessary and sufficient conditions for the continuity of operator linear integral in Orlicz space on a compact set of functions realized with the terms of a lebegue measure of the Euclidean space ending dimens