Do you want to publish a course? Click here

The Energy Space of Hermite Operator in R^n and Associated Sobolev Spaces

فضاء الطاقة لمؤثر هرميت في R^n و فضاءات سوبوليڤ موافقة

1980   0   6   0 ( 0 )
 Publication date 2014
  fields Mathematics
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

In this paper we study the energy space of the Hermite differential operator and prove that it is a Hilbert space with a suitable inner product. Then we construct the powers of , denoted by , by using the spectral theory . We will see that has similar properties as for real numbers s > o, therefore we can construct new Hilbert spaces which are the energy spaces of powers of . They are Sobolev spaces.


Artificial intelligence review:
Research summary
يتناول البحث دراسة فضاء الطاقة لمؤثر هرميت التفاضلي H = -Δ + |x|² ويثبت أنه فضاء هيلبرت مع جداء داخلي مناسب. يتم بناء قوى المؤثر H باستخدام النظرية الطيفية، ويظهر أن HS يمتلك خصائص مشابهة لـ H للأعداد الحقيقية s > 0. يمكن بناء فضاءات هيلبرت جديدة W2H(R) وهي فضاءات طاقة لقوى المؤثر وتعتبر فضاءات سوبوليف. يمكن تعميم هذه الفضاءات إلى WS,H(R) للأعداد الحقيقية 1 ≤ p < ∞. البحث يعتمد على الخواص الطيفية لمؤثر هرميت ويستخدم توابع هرميت الخاصة في فضاءات متعددة مثل Lp(R2) وS'(R) وS(R). النتائج تشير إلى أن فضاء الطاقة لمؤثر هرميت هو فضاء هيلبرت تام مع جداء داخلي مناسب، ويمكن استخدام هذه النتائج في تطبيقات فيزيائية ورياضية متعددة.
Critical review
دراسة نقدية: بالرغم من أن البحث يقدم مساهمات قيمة في دراسة فضاءات الطاقة لمؤثر هرميت، إلا أنه يمكن توجيه بعض الانتقادات البنّاءة. أولاً، البحث يعتمد بشكل كبير على الخواص الطيفية دون تقديم تطبيقات عملية واضحة في الفيزياء أو الرياضيات التطبيقية، مما قد يقلل من فائدة النتائج في التطبيقات العملية. ثانياً، كان من الممكن توسيع الدراسة لتشمل مؤثرات أخرى مشابهة مثل مؤثر لاجير أو لوجاندر، مما يعزز من شمولية البحث. ثالثاً، الاعتماد الكبير على المراجع الأجنبية دون تقديم أمثلة تطبيقية محلية قد يجعل البحث أقل ارتباطاً بالواقع الأكاديمي المحلي.
Questions related to the research
  1. ما هو الهدف الرئيسي من البحث؟

    الهدف الرئيسي من البحث هو دراسة فضاء الطاقة لمؤثر هرميت التفاضلي وإثبات أنه فضاء هيلبرت مع جداء داخلي مناسب، بالإضافة إلى بناء فضاءات هيلبرت جديدة تعتمد على قوى المؤثر ودراسة خصائصها.

  2. ما هي الفضاءات التي تم دراستها في البحث؟

    تم دراسة فضاءات هيلبرت وفضاءات سوبوليف المرتبطة بمؤثر هرميت، بالإضافة إلى فضاءات Lp(R2) وS'(R) وS(R).

  3. ما هي التطبيقات المحتملة للنتائج التي توصل إليها البحث؟

    التطبيقات المحتملة تشمل الفيزياء الرياضية، خاصة في دراسة المعادلات التفاضلية الجزئية مثل معادلة شرودينجر ومعادلة انتشار الحرارة، بالإضافة إلى تطبيقات في الميكانيكا الكمية.

  4. ما هي الانتقادات التي يمكن توجيهها للبحث؟

    الانتقادات تشمل الاعتماد الكبير على النظرية الطيفية دون تقديم تطبيقات عملية واضحة، وعدم شمولية الدراسة لمؤثرات أخرى مشابهة، والاعتماد الكبير على المراجع الأجنبية دون تقديم أمثلة تطبيقية محلية.


References used
NANKDAKUMARAN, A.K. ; RATNAKUMAR,P.K.Schrödinger equation and the oscillatory semigroup for the Hermite operator.2009
SJOGREN, P. ; TORREA,J.L. On the boundary convergence of solutions to the Hermite – Schrödinger equation. Duke Math , J.55, 1987, 699 -715
BONJIOANNI, B.;ROGERS, K.M . Regularity of the Schrödinger equation for the Harmonic oscillator.2008
rate research

Read More

The aim of this paper is to study and generalize some results that related by the complete continuity of the urysohn.s operator of two variables on a set on which a lebesgue meagure is defined and study uniform convergence sequence of the urysohn .s. operators that defined by functions using convergence meager Depending on caratheodory condition of measurable sets .
The aim of this paper is to study and generalize some results that related by compactness and continuity of Urysohn.S operator of two variables on a set on which a lebesgue measure is defined and using the norm that achieved some certain con ditions and study uniform convergence sequence of Urysohn.S. operators that defined by functions using conver -gence In measure depending on Caratheodory condition of measurable sets and obtain similar results related by continuity and compactness conditions of optional operator that achieved Urysohn .S operator.
In this paper, we find distributional solutions of boundary value problems in Sobolev spaces. This solution will be given as Fourier series with respect to the Eigen functions of a positive definite operator and its square roots. Then, we obtain solutions of such problems of a real order.
We define Riemann – Banach space and the space conformal to the Euclidean planer space, then we create The necessary and sufficient conditions in order to be Riemann – Banach space conformal to the Euclidean space, then we prove that constant- curvature Riemann – Banach spaces which have are conformal to the Euclidean space. Finally, we create locally, the measurement in constant curvature Riemann –Banach spaces.
The aim of this paper is to discuss the necessary and sufficient conditions for the continuity of operator linear integral in Orlicz space on a compact set of functions realized with the terms of a lebegue measure of the Euclidean space ending dimens ion and the use of the terms continuous measurement N-function definition continued N-function some theorems in Hilbert, Banach spaces. Then the research touched on the concept of the continued complementary N-function given, in order to discuss the terms of a continuing full for Integrative operator linear kernel which is studied, and to achieve qualities compact a functions set in W. Orlicz space and choose the best approximation for linear integrative operators. Finally a comparison is carried out between continuing full and weak convergence of the functional sequences in subspace of W. Orlicz space.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا