الهدف من هذا البحث مناقشة الشروط اللازمة و الكافية لاستمرارية المؤثر التكاملي الخطي في فضاء أورليتش على مجموعة متراصة لدوال محققة لشروط قياس لوبيغ في الفضاء الاقليدي المنتهي البعد و استخدام شروط دالة القياس المستمرة اعتماد على تعريفي تابع و النظيم في إثبات صحة بعض المبرهنات في فضاءي هلبرت ,باناخ. ثم تم التطرق إلى مفهوم الـ تابع المتتم لـ تابع معطى و ذلك بهدف مناقشة شروط الاستمرار التام لنواة المؤثـر التكاملي الخطي المدروس. و تحقيق صفات التراص على مجموعة دوال في فضاء أورليتش و اختيار أفضل تقريب لذلك المؤثر التكاملي الخطي. و أخيراً تم أجراء مقارنة بين الاستمرار التام و التقارب الضعيف للمتتاليات الدالية في فضاء جزئي من فضاء أورليتش.
The aim of this paper is to discuss the necessary and sufficient conditions for the continuity of operator linear integral in Orlicz space on a compact set of functions realized with the terms of a lebegue measure of the Euclidean space ending dimension and the use of the terms continuous measurement N-function definition continued N-function some theorems in Hilbert, Banach spaces. Then the research touched on the concept of the continued complementary N-function given, in order to discuss the terms of a continuing full for Integrative operator linear kernel which is studied, and to achieve qualities compact a functions set in W. Orlicz space and choose the best approximation for linear integrative operators. Finally a comparison is carried out between continuing full and weak convergence of the functional sequences in subspace of W. Orlicz space.
Artificial intelligence review:
Research summary
يهدف هذا البحث إلى مناقشة الشروط اللازمة والكافية لاستمرارية المؤثر التكاملي الخطي في فضاء أورليتش على مجموعة متراصة من الدوال التي تحقق شروط قياس لوبيغ في الفضاء الإقليدي المنتهي البعد. يعتمد البحث على مفهوم N-تابع والنظيم في إثبات صحة بعض المبرهنات في فضائي هلبرت وباناخ. يتطرق البحث إلى مفهوم N-تابع المتتم لـ N-تابع المعطى بهدف مناقشة شروط الاستمرار التكاملي لنواة المؤثر التكاملي الخطي المدروس، وتحقيق صفات التراص على مجموعة دوال في فضاء أورليتش واختيار أفضل تقريب لذلك المؤثر التكاملي الخطي. في النهاية، تم إجراء مقارنة بين الاستمرار التام والتقارب الضعيف للمنتاليات الدالية في فضاء جزئي من فضاء أورليتش. يتناول البحث أيضًا أهمية دراسة أنواع مختلفة من الفضاءات والتحليل التابعي، ويستخدم طرق الاستنتاج المباشر والاعتماد على بعض المتباينات الشهيرة في التحليل التابعي.
Critical review
دراسة نقدية: يعد هذا البحث إضافة قيمة إلى مجال التحليل التابعي والفضاءات الوظيفية، حيث يقدم مناقشة شاملة للشروط اللازمة والكافية لاستمرارية المؤثرات التكاملية الخطية في فضاء أورليتش. ومع ذلك، يمكن ملاحظة بعض النقاط التي قد تحتاج إلى مزيد من التوضيح أو التحسين. على سبيل المثال، قد يكون من المفيد تقديم أمثلة تطبيقية توضح كيفية استخدام النتائج النظرية في مسائل عملية. كما أن البحث يعتمد بشكل كبير على المفاهيم الرياضية المتقدمة، مما قد يجعل من الصعب على القراء غير المتخصصين فهم جميع التفاصيل. بالإضافة إلى ذلك، قد يكون من المفيد تضمين مناقشة حول القيود المحتملة للنتائج المقدمة وكيفية التعامل معها في الأبحاث المستقبلية.
Questions related to the research
-
ما هو الهدف الرئيسي من هذا البحث؟
الهدف الرئيسي من هذا البحث هو مناقشة الشروط اللازمة والكافية لاستمرارية المؤثر التكاملي الخطي في فضاء أورليتش على مجموعة متراصة من الدوال التي تحقق شروط قياس لوبيغ في الفضاء الإقليدي المنتهي البعد.
-
ما هي المفاهيم الأساسية التي يعتمد عليها البحث؟
يعتمد البحث على مفاهيم N-تابع والنظيم في إثبات صحة بعض المبرهنات في فضائي هلبرت وباناخ، بالإضافة إلى شروط قياس لوبيغ والفضاءات الوظيفية.
-
ما هي النتائج الرئيسية التي توصل إليها البحث؟
توصل البحث إلى مجموعة من النتائج حول الشروط اللازمة والكافية لاستمرارية المؤثرات التكاملية الخطية في فضاء أورليتش، بالإضافة إلى مقارنة بين الاستمرار التام والتقارب الضعيف للمنتاليات الدالية في فضاء جزئي من فضاء أورليتش.
-
ما هي النقاط التي يمكن تحسينها في البحث؟
يمكن تحسين البحث من خلال تقديم أمثلة تطبيقية توضح كيفية استخدام النتائج النظرية في مسائل عملية، وتوضيح القيود المحتملة للنتائج المقدمة وكيفية التعامل معها في الأبحاث المستقبلية.
References used
(K Kuratowski, A Half Century Of Polish Mathematics (Warsaw, 1980
(H Steinhaus, Between Spirit And Matter Mediate Mathematics (Polish) (Warsaw- Wroclaw, 2000
(Wladyslaw Orlicz Collected Papers I, Ii (Warsaw, 1988
The aim of this paper is to study and generalize some results that related by the complete continuity of the urysohn.s operator of two variables on a set on which a lebesgue meagure is defined and study uniform convergence sequence of the urysohn .s.
Will be proved the sharp inequality
Where for function in space second degree continuity module
will be proved the inequality : for any and
will be proved the theory : for any natural number we obtain
It's considered that، the ring of linear operator of vector
space and stilled as a source of many mathematicians in general and
algebreians particularly in introducing a new concepts in algebra
and ring theory. In this subject I. Kaplansky proved
The aim of this paper is to study and generalize some results that related by compactness and continuity of Urysohn.S operator of two variables on a set on which a lebesgue measure is defined and using the norm that achieved some certain con
This paper presents a certain method to determine the range of varibility
of linear functionals defined in the Caratheodory Class i.e the class of
analytic functions in the unit disk ( z < 1 ) with a positive real part and
f(0)=1.