Do you want to publish a course? Click here

Two Efficient Parallel Algorithms for Solving Symmetric Pentadiagonal Linear Systems of Equations

خوارزميتان متوازيتان فعالتان لحل جمل المعادلات الخطية خماسية الأقطار المتناظرة

1179   0   12   0 ( 0 )
 Publication date 2014
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

In this paper, we described tow parallel algorithms for finding the solution of symmetric pentadiagonal linear systems of equations of order n . The proposed algorithms require 2 processors; each of both possesses      N O n local memory. The first algorithm includes writing the pentadiagonal matrix in the form of product of tow tridiagonal matrices. We suggested a parallel algorithm for solving tridiagonal linear systems of equations. The second algorithm consists of decomposition of the pentadiagonal matrix in a form such that we can carry out the resulting linear systems of equations by using parallel algorithm. We carried out many numerical experiments to illustrate the efficiency, speeding up and accuracy for solving symmetric pentadiagonal linear systems of equations. The numerical experiments showed that the proposed algorithms were efficient and one of both was much faster in factor of 2 than the other one for solving the same test problems.


Artificial intelligence review:
Research summary
في هذه الورقة، يقدم الدكتور محمد مزيد دريباتي خوارزميتين متوازيتين لحل جمل المعادلات الخطية خماسية الأقطار المتناظرة. تتطلب الخوارزميتان استخدام معالجين، حيث يتم تقسيم المصفوفة خماسية الأقطار إلى مصفوفتين ثلاثيتي الأقطار في الخوارزمية الأولى، بينما تعتمد الخوارزمية الثانية على تحليل المصفوفة بشكل يمكن من تنفيذ الحل بشكل متوازي. أظهرت التجارب العددية أن الخوارزميتين فعالتين، مع تفوق الخوارزمية الأولى من حيث السرعة والدقة. تم تنفيذ التجارب باستخدام لغة Matlab على حاسوب بنتيوم V، وأظهرت النتائج أن الخوارزمية الأولى أسرع بمرتين من الخوارزمية الثانية وتعطي حلولاً أكثر دقة.
Critical review
دراسة نقدية: الورقة تقدم حلولاً مبتكرة وفعالة لمشكلة حل جمل المعادلات الخطية خماسية الأقطار المتناظرة باستخدام خوارزميات متوازية. ومع ذلك، يمكن تحسين الورقة من خلال تقديم تحليل أعمق لتأثير عدد المعالجات على أداء الخوارزميات. بالإضافة إلى ذلك، قد يكون من المفيد مقارنة الخوارزميات المقترحة مع خوارزميات أخرى موجودة في الأدبيات لتوضيح مدى تفوقها. كما أن الورقة تفتقر إلى مناقشة حول تطبيقات عملية محددة يمكن أن تستفيد من هذه الخوارزميات، مما قد يزيد من قيمة البحث.
Questions related to the research
  1. ما هي المشكلة الرئيسية التي تحاول الورقة حلها؟

    الورقة تحاول حل مشكلة جمل المعادلات الخطية خماسية الأقطار المتناظرة باستخدام خوارزميات متوازية فعالة.

  2. ما هي الخوارزميتان المقترحتان في الورقة؟

    الخوارزمية الأولى تعتمد على كتابة المصفوفة خماسية الأقطار كجداء مصفوفتين ثلاثيتي الأقطار، بينما الخوارزمية الثانية تعتمد على تحليل المصفوفة بشكل يمكن من تنفيذ الحل بشكل متوازي.

  3. ما هي النتائج التي توصلت إليها التجارب العددية؟

    أظهرت التجارب العددية أن الخوارزميتين فعالتين، مع تفوق الخوارزمية الأولى من حيث السرعة والدقة.

  4. ما هي التوصيات التي قدمتها الورقة بناءً على النتائج؟

    الورقة توصي باستخدام الخوارزمية الأولى بدلاً من الخوارزمية الثانية لحل جمل المعادلات الخطية خماسية الأقطار المتناظرة من حيث زمن التنفيذ والدقة.


References used
C.W. Groetsch, J.T. King, Matrix Methods and Applications, Prentice Hall, Englewood Cliffs, NJ, 1988
A. Quarteroni, R. Sacco and F. Saleri, Numerical Mathematics, Springer-Verlag, 2000
Arnt H. Veenstra, H.X. Lin and E.A.H. Vollebregt, A comparison of scability of different parallel iterative methods for shallow water equations, Contemp. Math. 218 (1998) 357–364
rate research

Read More

In this paper, we present two new methods for finding the numerical solutions of systems of the nonlinear equations. The basic idea depend on founding relationship between minimum of a function and the solution of systems of the nonlinear equatio ns. The first method seeks the numerical solution with a sequence of search directions, which is depended on gradient and Hessian matrix of function, while the second method is based on a sequence of conjugate search directions. The study shows that our two methods are convergent, and they can find exact solutions for quadratic functions, so they can find high accurate solutions for over quadratic functions. The purposed two algorithms are programmed by Mathematica Version9. The approximate solutions of some test problems are given. Comparisons of our results with other methods illustrate the efficiency and highly accurate of our suggested methods.
In this paper, we introduce a numerical method for solving systems of high-index differential algebraic equations. This method is based on approximating the exact solution by spline polynomial of degree eight with five collocation points to find the numerical solution in each step. The study shows that the method when applied to linear differential-algebraic systems with index equal one is stable and convergent of order 8, while it is stable and convergent of order 9-u for index equal u . Numerical experiments for four test examples and comparisons with other available results are given to illustrate the applicability and efficiency of the presented method
In this paper we offer a new interactive method for solving Multiobjective linear programming problems. This method depends on forming the model for reducing the relative deviations of objective functions from their ideal standard, and dealing with the unsatisfying deviations of objective functions by reacting with decision maker. The results obtained from using this method were compared with many interactive methods as (STEM Method[6] – Improvement STEM Method[7] – Matejas-peric Method[8]). Numerical results indicate that the efficiency of purposed method comparing with the obtained results by using that methods at initial solution point and the other interactive points with decision maker.
In this paper, spline collocation method is considered for solving two forms of problems. The first form is general linear sixth-order boundary-value problem (BVP), and the second form is nonlinear sixth-order initial value problem (IVP). The existen ce, uniqueness, error estimation and convergence analysis of purpose methods are investigated. The study shows that proposed spline method with three collocation points can find the spline solutions and their derivatives up to sixth-order of the two BVP and IVP, thus is very effective tools in numerically solving such problems. Several examples are given to verify the reliability and efficiency of the proposed method. Comparisons are made to reconfirm the efficiency and accuracy of the suggested techniques.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا