Do you want to publish a course? Click here

Study of Islands Formation and Growing in thin films by AFM

دراسة تشكل الجزر و نموها في الأغشية على ركائز زجاجية بمجهر القوة الذرية

838   1   6   0 ( 0 )
 Publication date 2013
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

In this paper we present a study of ZnS thin films thermally deposited on glass substrates, with different optical thicknesses. On topography micrographs and feature parameters obtained by Atomic Force Microscope, we pursued the islands formation and growing in ZnS thin films even on the same optical thickness of the film. For doing so, we analyzed the micrographs surface, using Watershed Segmentation and Wolf pruning that allow the detection of significant features on surfaces, Grain sorting operator and Parameter Distribution Study.

References used
Gao X. D., Li X. M, Yu W. D., Studies of zinc and lead chalcogenide thin films grown by SILAR Thin Solid films 468 (2004)43
Cheng J., Fan D., Wang H., Liu B. W., Chemical bath deposition of crystalline ZnS thin films, Semicond. Sci. Technol. 18 (2003)676
S. H. Deulkar, C. H. Bhosaile, M. Sharon, A study of structural, compositional and optical properties of spray-deposited non-stoichiometric (Zn,Fe)S thin films, J. Phys. Chem. Solids 65(2004)1879
rate research

Read More

We present in this paper a graphical study of regions of thermally deposited ZnS thin films on glass by atomic force microscope (AFM). This study consists of volume parameters and functional parameters of these films surfaces for the object of inv estigating the possibility to retain fluids by these films. For doing so, we registered Abbott-Firestone curves that are based on height distribution for these films, we measured volume and functional parameters in the whole pores. Using the thresholding operator we followed parameters distribution in depth of the surface. At the end we compared these parameters by the results of another study based on slice selection at different levels.
In this paper we present the preparation of PbS nanocrystalline thin films using Chemical Bath Deposition (CBD) technique. We have performed this work in order to study the photoconductivity of PbS semi-conductor thin films. The details of the pre paration method are described. Thickness of deposited films has been determined using mechanical and optical methods. From the optical absorption measurements we have determined the band gap values. Using the first approximation parabolic bands model and the obtained values of band gaps, we have determined the size of PbS nanocrystallites. Also, we have investigated the electrical and photoelectrical behaviors of the PbS films. Our study shows that the size of PbS thin films nanocrystallites affects the photoconductive properties of the material. Furthermore, investigations show that there are two different sizes of grains located in two different layers, the first one, with grain’s size of about 25nm, concerns the part of PbS deposited directly on the glass substrate and the second layer, with grain’s size of about 70nm, concerns the PbS deposited on the first layer.
Hydrocarbon burning nowadays has a great part of the required energy consumed in the world, mainly in the transport vehicle engines, which seems to be the main source in the future. This urges us develop the fuel burning in different internal combust ion engines according to the environmental increasing requirements nowadays. The carbon fine-dust produced is the main source of the environmental pollutants, which could be considered as the main cause of cancer. Therefore our present paper deals with the way of carbon fine dust formation during fuel burning in engines and gives a mathematical model describing that complex method, and studying the different function affecting its formation, the aim is to find a way to develop the burning process in engines and increase its working and decrease the pollution produced.
In the present paper, we discuss the influence of point defects on electrical and optical characteristics of ZnO thin films grown by the atomic layer deposition (ALD) method on glass and silicon substrates at low temperature (100°C). Room temperatu re photoluminescence (RT PL) spectra, secondary ion mass spectroscopy (SIMS), and Hall Effect measurements were made for as-grown ZnO layers. The annealing process was performed in air as well as in N2 atmosphere at 400°C for half an hour. The long annealing resulted in a larger reduction in electron concentration. Simultaneously, an evident increase in carrier's mobility was observed, which may suggest that annealing resulted in a decreased number of native defects in the ZnO layers. Also, it was observed that hydrogen atoms in ZnO samples did not dominate their electrical properties with the increase of electrons concentration.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا