Do you want to publish a course? Click here

Classification of the semigroups of order three and four

تصنيف أنصاف الزمر من المرتبة الثالثة و من المرتبة الرابعة

685   0   29   0 ( 0 )
 Publication date 2014
  fields Mathematics
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

In this paper we are presenting a new method for studying the semigroups of order three and four. We are going to explore these semigroups and illustrate a better description of them while observing their enormous increasing in number for larger orders. We are presenting the methods we wrote and followed during our study of associativity and during the classification process.


Artificial intelligence review:
Research summary
تقدم هذه الورقة البحثية طريقة جديدة لدراسة وتصنيف أنصاف الزمر من المرتبة الثالثة والرابعة. تهدف الورقة إلى تقديم وصف أفضل لهذه الأنصاف من خلال استعراض الطرق والخوارزميات المستخدمة في عملية التصنيف. تعتمد الدراسة على البرمجة غرضية التوجه باستخدام لغة البرمجة Java لتوليد وتصنيف أنصاف الزمر. تم استخدام خوارزميات مختلفة للتحقق من الخاصية التجميعية لأنصاف الزمر وتحديد ما إذا كانت تحتوي على عناصر حيادية أو صفرية. النتائج تم حفظها في ملفات مضغوطة لتسهيل تحميلها ومعالجتها لاحقًا. كما تم تقديم جداول مقارنة بين أعداد الزمر وأعداد أنصاف الزمر من مراتب مختلفة، وتوضيح كيفية تصنيف أنصاف الزمر إلى أنواع مختلفة بناءً على خصائصها.
Critical review
دراسة نقدية: على الرغم من أن الورقة تقدم إسهامًا مهمًا في مجال تصنيف أنصاف الزمر، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، الورقة تعتمد بشكل كبير على البرمجة بلغة Java، وكان من الممكن تقديم مقارنة مع لغات برمجة أخرى لمعرفة مدى فعالية الطريقة المستخدمة. ثانيًا، لم تتناول الورقة بشكل كافٍ التطبيقات العملية لهذه الأنصاف في مجالات أخرى مثل علوم الحاسوب أو الهندسة. أخيرًا، كان من الممكن تقديم تحليل أعمق للنتائج المستخلصة وتوضيح كيفية استفادة الباحثين الآخرين من هذه النتائج في أبحاثهم المستقبلية.
Questions related to the research
  1. ما هي الطريقة الجديدة التي قدمتها الورقة لدراسة أنصاف الزمر؟

    قدمت الورقة طريقة جديدة تعتمد على البرمجة غرضية التوجه باستخدام لغة البرمجة Java لتوليد وتصنيف أنصاف الزمر من المرتبة الثالثة والرابعة.

  2. ما هي الخوارزميات المستخدمة في التحقق من الخاصية التجميعية لأنصاف الزمر؟

    استخدمت الورقة خوارزمية البحث الشامل (Brute-Force method) للتحقق من الخاصية التجميعية لأنصاف الزمر.

  3. كيف تم حفظ النتائج لتسهيل معالجتها لاحقًا؟

    تم حفظ النتائج في ملفات مضغوطة بصيغة gzip لتسهيل تحميلها ومعالجتها لاحقًا.

  4. ما هي النقاط التي يمكن تحسينها في هذه الدراسة؟

    يمكن تحسين الدراسة من خلال تقديم مقارنة مع لغات برمجة أخرى، تناول التطبيقات العملية لأنصاف الزمر، وتقديم تحليل أعمق للنتائج المستخلصة.


References used
Clifford, A. H. and Preston, G. B. (1961). The Algebraic Theory of Semigroups, Vol. I. Mathematical Surveys of the American Mathematical Society No.7. p.1
Griess, R. L. (1982). The friendly giant. Inventiones Mathematicae 69 (1): 1- 102
Forsythe, G. E. (1955). SWAC computes 126 distinct Semigroups of order 4. Proc. Amer. Math. Soc., 6:443-447
rate research

Read More

We study the asymptotic behavior of solutions of a nonlinear differential equation. Using Bihari's integral inequality, we obtain sufficient conditions for all of continuable solutions to be asymptotic.
It is known that (Z×Z) is a semigroup with respect to addition, and it can be endowed with the discrete topology; where Z is the set of integers. We can make β(Z×Z), the Stone –Cech compactification of (Z×Z), a right – topological semi group (Baker & Butcher).
In this paper ,we study asymptotic properties of solutions of the following third – order differential equations with -P Laplacian. In the sequel,it is assumed that all solutions of the equation are continuously extendable throughout the entire re al axis. We shall prove sufficient conditions under which all global solutions
This research studies the distributive solutions for some partial differential equations of second order. We study specially the distributive solutions for Laplas equation, Heat equation, wave equations and schrodinger equation. We introduce the fundamental solutions for precedent equations and inference the distributive solutions by using the convolution of distributions concept. For that we use some of lemmas and theorems with proofs, specially for Laplas equation. And precedent some of concepts, defintions and remarks.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا