Do you want to publish a course? Click here

Large Time Behavior of Solutions to Third Order Nonlinear Differential Equations With p-Laplacian

سلوك حلول معادلات تفاضلية غير خطية من المرتبة الثالثة بثابت لابلاسي في المدى الزمني البعيد

1665   1   30   0 ( 0 )
 Publication date 2011
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

In this paper ,we study asymptotic properties of solutions of the following third – order differential equations with -P Laplacian. In the sequel,it is assumed that all solutions of the equation are continuously extendable throughout the entire real axis. We shall prove sufficient conditions under which all global solutions


Artificial intelligence review:
Research summary
في هذه الورقة، يدرس المؤلف الخصائص التقاربية لحلول المعادلات التفاضلية من الدرجة الثالثة مع P-Laplacian. يتم التركيز على المعادلة التفاضلية من الدرجة الثالثة والتي تحتوي على P-Laplacian، حيث يتم تقديم الشروط الكافية التي تضمن أن جميع الحلول العالمية تكون تقاربية إلى شكل معين مع مرور الوقت. يتم افتراض أن جميع الحلول للمعادلة يمكن تمديدها بشكل مستمر عبر المحور الحقيقي بالكامل. يتم استخدام تقنيات رياضية مثل متراجحة بيهاري لإثبات النتائج. تهدف الدراسة إلى تقديم فهم أعمق للسلوك التقاربي للحلول وتوفير الشروط الضرورية لتحقيق ذلك.
Critical review
دراسة نقدية: تقدم هذه الورقة إسهامًا مهمًا في مجال المعادلات التفاضلية غير الخطية، خاصة فيما يتعلق بالسلوك التقاربي للحلول. ومع ذلك، يمكن تقديم بعض الملاحظات النقدية لتحسين العمل. أولاً، قد يكون من المفيد تقديم المزيد من الأمثلة التطبيقية لتوضيح النتائج النظرية بشكل أفضل. ثانيًا، قد تكون هناك حاجة لتوضيح بعض الخطوات الرياضية بشكل أكثر تفصيلاً لتسهيل فهم القارئ. وأخيرًا، يمكن تعزيز الورقة بمقارنة النتائج مع دراسات سابقة لتوضيح الفروق والإسهامات الجديدة بشكل أكثر وضوحًا.
Questions related to the research
  1. ما هو الهدف الرئيسي من هذه الورقة؟

    الهدف الرئيسي هو دراسة الخصائص التقاربية لحلول المعادلات التفاضلية من الدرجة الثالثة مع P-Laplacian وتقديم الشروط الكافية لضمان أن جميع الحلول العالمية تكون تقاربية إلى شكل معين مع مرور الوقت.

  2. ما هي الأدوات الرياضية المستخدمة في الورقة لإثبات النتائج؟

    تم استخدام متراجحة بيهاري وتقنيات رياضية أخرى لإثبات النتائج المتعلقة بالسلوك التقاربي للحلول.

  3. ما هي الافتراضات الأساسية التي تم تبنيها في الدراسة؟

    تم افتراض أن جميع الحلول للمعادلة التفاضلية يمكن تمديدها بشكل مستمر عبر المحور الحقيقي بالكامل.

  4. ما هي النقاط التي يمكن تحسينها في الورقة؟

    يمكن تحسين الورقة من خلال تقديم المزيد من الأمثلة التطبيقية، توضيح الخطوات الرياضية بشكل أكثر تفصيلاً، ومقارنة النتائج مع دراسات سابقة لتوضيح الفروق والإسهامات الجديدة.


References used
Bartuˇsek, M. (2005). Singular solutions for the differential equation with p- Laplacian, Archivum Math. (Brno), v.41 ,pp.123–128
Bartuˇsek, M. (2006). On singular solutions of a second order differential equations, Electronic Journal of Qualitaive Theory of Differential Equations, v. 8,pp .1–13
Bartuˇsek, M. and MedveˇD, M. (2008). Existence of global solutions for systems of second-order functional-differential equations with p-Laplacian, Electronic Journal of Differential Equations,v.(40),pp. 1–8
rate research

Read More

We study the asymptotic behavior of solutions of a nonlinear differential equation. Using Bihari's integral inequality, we obtain sufficient conditions for all of continuable solutions to be asymptotic.
This research studies the distributive solutions for some partial differential equations of second order. We study specially the distributive solutions for Laplas equation, Heat equation, wave equations and schrodinger equation. We introduce the fundamental solutions for precedent equations and inference the distributive solutions by using the convolution of distributions concept. For that we use some of lemmas and theorems with proofs, specially for Laplas equation. And precedent some of concepts, defintions and remarks.
Most of mathematical physics problems can be translated into solve one partial differential equation or more with specific initial conditions and boundary conditions. This is called the boundary value problem for the differential equations. This paper studies the solution of systems of hyperbolic and parabolic partial differential equations assuming some boundary conditions in different domains in the plane xoy. In this paper we have proved theorem about the existence and uniqueness of the solutions. This article is considered to be a continuation to the works of Alimove, Ssallah Aldinov, Gooraev and Alhamad.......
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا