تقدم هذه الأطروحة حلا جديداً يسمح للأطباء بمعرفة التداخلات الدوائية آخذة بالحسبان العوامل الأخرى المؤثرة مثل عمر المريض و وزنه و حالته الفيزيولوجية و المرضية. يتميز الحل بكونه تزايدياً ليس على مستوى إغناء قاعدة البيانات بالمعلومات عن التداخلات الدوائية فقط بل بقدرته على استنتاج تداخلات أكثر تعقيداً من خلال نظام خبير مدمج قادر على ذلك. إِذ يمكن للنظام استنتاج
التداخلات بين الأدوية من خلال معرفته بمكوناتها و معرفته بالتداخلات المحتملة بين المكونات أو بين العائلات الدوائية. يعمل النظام بطرائق ثلاث إِذ يستطيع تحديد هل الأدوية التي يتناولها المريض حالياً لها آثار جانبية قد تكون السبب في مرضه؟ كما أنه يستطيع تنبيه الطبيب إلى وجود تداخلات بين الأدوية التي يرغب بوصفها للمريض مع الأدوية التي يتناولها المريض حالياً أو مع الحالة المرضية أو الفيزيولوجية للمريض كما يمكنه طرح أدوية بديلة عن الأدوية التي تسبب التداخلات. كما أن الحل يقدم خدمات إضافية مثل الربط بين الاسم التجاري و الاسم العلمي للدواء و العكس، و الربط بين الأدوية و الأمراض.
This paper presents a new solution that allows the doctors to know drug interactions,
considering other affecting factors such as the patient's age, weight, physiological and
pathological condition. This solution is characterized by being incremental, not only by
enriching the database with drug interactions information, but also by its ability to conclude
other interactions through a built-in expert system. The system concludes drugs interactions
based on its active substrates and the potential interactions between them or between the drugs
families. The system serves in three ways; it determines whether the patient illness is possibly
due to the medications he is on. It alerts the doctor to the interaction of the newly prescribed
medication with the patient’s medications, and to its influence on the patient’s physiological or
pathological condition. Besides, it suggests alternative drugs when needed. The solution offers
additional services such as binding between the brand name and the generic drug, and between
drugs and diseases.
Artificial intelligence review:
Research summary
تقدم هذه الأطروحة نظامًا طبيًا خبيرًا يهدف إلى تحسين استخدام الأدوية بشكل آمن وفعال من خلال الكشف عن التداخلات الدوائية. يأخذ النظام في الاعتبار عوامل متعددة مثل عمر المريض، وزنه، حالته الفيزيولوجية والمرضية. يتميز النظام بقدرته على استنتاج تداخلات دوائية معقدة باستخدام قاعدة بيانات محدثة ونظام خبير مدمج. يمكن للنظام تحديد ما إذا كانت الأدوية التي يتناولها المريض حاليًا تسبب آثارًا جانبية، تنبيه الطبيب إلى التداخلات المحتملة بين الأدوية الجديدة والأدوية الحالية، واقتراح بدائل دوائية. كما يقدم النظام خدمات إضافية مثل الربط بين الأسماء التجارية والعلمية للأدوية والربط بين الأدوية والأمراض. يعتمد النظام على نموذج هرمي يعتمد على بنية المواد الفعالة والعائلات الدوائية، مما يسهل عملية التحديث والاستنتاج. يهدف النظام إلى دعم الأطباء في اتخاذ قرارات طبية دقيقة وسريعة، وتحسين الأداء من خلال معالجة التداخلات على مستوى المادة الفعالة والعائلة الدوائية.
Critical review
تعد هذه الأطروحة خطوة مهمة نحو تحسين سلامة المرضى من خلال الكشف عن التداخلات الدوائية. ومع ذلك، يمكن تحسين النظام بطرق عدة. أولاً، يمكن تعزيز دقة النظام من خلال دمج تقنيات التعلم الآلي لتحليل البيانات الكبيرة واستخلاص الأنماط. ثانيًا، يمكن إضافة ميزات تفاعلية مثل واجهة مستخدم أكثر سهولة وتفاعلية لتسهيل استخدام النظام من قبل الأطباء. ثالثًا، يمكن تحسين النظام ليشمل تحليلات الجرعات الدوائية وتأثيراتها المحتملة، مما يزيد من دقة التنبؤ بالتداخلات. أخيرًا، يمكن توسيع النظام ليشمل بيانات من مصادر متعددة مثل السجلات الصحية الإلكترونية والمختبرات لتحسين دقة التنبؤات.
Questions related to the research
-
ما هي العوامل التي يأخذها النظام في الاعتبار عند تحليل التداخلات الدوائية؟
يأخذ النظام في الاعتبار عدة عوامل مثل عمر المريض، وزنه، حالته الفيزيولوجية والمرضية، والأدوية التي يتناولها حاليًا.
-
كيف يمكن للنظام تحسين دقة التنبؤ بالتداخلات الدوائية؟
يمكن تحسين دقة التنبؤ بالتداخلات الدوائية من خلال دمج تقنيات التعلم الآلي، إضافة تحليلات الجرعات الدوائية، وتوسيع النظام ليشمل بيانات من مصادر متعددة مثل السجلات الصحية الإلكترونية والمختبرات.
-
ما هي الخدمات الإضافية التي يقدمها النظام؟
يقدم النظام خدمات إضافية مثل الربط بين الأسماء التجارية والعلمية للأدوية، والربط بين الأدوية والأمراض، واقتراح بدائل دوائية.
-
ما هي التحديات التي تواجه الأنظمة السابقة في معالجة التداخلات الدوائية؟
تواجه الأنظمة السابقة تحديات مثل دقة النموذج، القدرة على التحديث بسرعة، السرعة في الأداء، الديناميكية في المعالجة، العوامل المؤثرة في العلاج، والتفاعل مع الطبيب.
References used
I.H. Ahmed-Jushuf, K.W. Ah-See, S.P. Allison, M.N. Badminton, et al; British National Formulary BNF; 2010; edition 59; London; Published by BMJ Group Tavistock Square, London C1H 9JP, UK and RPS Publishing
Robert A. Raschke, MD, MS; Bea Gollihare, MS, RN; et al. A Computer Alert System to Prevent Injury From Adverse Drug Events 1994; 1317-1318
P G Nightingale, D Adu, N T Richards, M Peters; Implementation of rules based computerized beside prescribing and administration: intervention study 2000; 750-752
Background: Inappropriate prescriptions are important risk factors associated with increased adverse drug effects, morbidity, and depletion of health care resources for the elderly patient community, then the development of Beyer criteria as a reference and an approved general framework for assessing the safety of drug care administered to the elderly.
This paper introducesa new expert system (ES) for faulted section determination in
electrical power system andinterpretingthe performance of the protective system (relays
and circuit breakers). The introducedESrequiresinformation about the power sy
An expert system was developed to consider words' grammar case in Arabic phrases without diacritics. First, the system gets words' morphology and tags using Microsoft tool (ATK), then it depends on Arabic grammar to get words' grammar case in nominal
Telmisartan is an antihypertensive drug that inhibits angiotensin II
receptors type AT1. Studies showed drug interactions with different
potentials. This study was intended to investigate the role of some
active ingredients acting on influx, efflu
In this research we introduce
a regularization based feature selection algorithm to benefit from
sparsity and feature grouping properties and incorporate it into the
medical image classification task. Using this group sparsity (GS)
method, the wh