Do you want to publish a course? Click here

Optimization Problem - knapsack

مسألة الحقيبة - البرمجة الديناميكية ومسائل الأمثلة

2356   2   53   0 ( 0 )
 Publication date 2016
and research's language is العربية
 Created by Zein Shaheen




Ask ChatGPT about the research

No English abstract


Artificial intelligence review:
Research summary
تتناول الورقة البحثية مشكلة حقيبة الظهر (Knapsack Problem) وهي إحدى مسائل تحسين الموارد في نظرية التعقيد. تتضمن المشكلة وجود n عنصرًا في متجر، ولكل عنصر وزن wi وقيمة vi. يمكن للسارق حمل وزن أقصى قدره C في حقيبة الظهر. في النسخة المقدمة من المشكلة، يمكن تقسيم العناصر إلى قطع أصغر، بحيث يمكن للسارق أن يقرر حمل جزء xi من العنصر i، حيث 0 ≤ xi ≤ 1. تساهم العناصر xiwi في الوزن الإجمالي في حقيبة الظهر وxivi في قيمة الحمولة. تقدم الورقة البحثية خوارزمية جشعة لحل المشكلة، حيث يتم ترتيب العناصر بترتيب تنازلي لقيمتها النسبية (Di = vi/wi) ومن ثم تعبئة حقيبة الظهر بالوحدات بدءًا من الأعلى قيمة. كما تتناول الورقة أيضًا الحل باستخدام البرمجة الديناميكية، حيث يتم بناء الحلول الجزئية من الحلول السابقة باستخدام صيغة تكرارية.
Critical review
دراسة نقدية: الورقة البحثية تقدم شرحًا جيدًا لمشكلة حقيبة الظهر وحلولها باستخدام الخوارزميات الجشعة والبرمجة الديناميكية. ومع ذلك، يمكن تحسين الورقة من خلال تقديم أمثلة تطبيقية أكثر تعقيدًا لتوضيح الفروق بين الحلول المختلفة. كما أن الورقة تفتقر إلى تحليل شامل للأداء الزمني والفضائي لكل خوارزمية، مما يجعل من الصعب على القارئ تقييم الفعالية النسبية لكل منها. بالإضافة إلى ذلك، يمكن تحسين الورقة من خلال تضمين مقارنة بين الحلول الجشعة والبرمجة الديناميكية من حيث الكفاءة والدقة.
Questions related to the research
  1. ما هي مشكلة حقيبة الظهر؟

    مشكلة حقيبة الظهر هي إحدى مسائل تحسين الموارد في نظرية التعقيد، حيث يتم تحديد مجموعة من العناصر لكل منها وزن وقيمة، ويجب اختيار العناصر بحيث لا يتجاوز الوزن الإجمالي حدًا معينًا وتكون القيمة الإجمالية أكبر ما يمكن.

  2. ما هي الخوارزمية الجشعة لحل مشكلة حقيبة الظهر؟

    الخوارزمية الجشعة لحل مشكلة حقيبة الظهر تتضمن ترتيب العناصر بترتيب تنازلي لقيمتها النسبية (Di = vi/wi) ومن ثم تعبئة حقيبة الظهر بالوحدات بدءًا من الأعلى قيمة حتى الوصول إلى الحد الأقصى للوزن.

  3. ما هو الفرق بين الحل الجشع والبرمجة الديناميكية في مشكلة حقيبة الظهر؟

    الحل الجشع يعتمد على اتخاذ قرارات محلية لتحقيق أفضل قيمة نسبية في كل خطوة، بينما البرمجة الديناميكية تعتمد على بناء الحلول الجزئية من الحلول السابقة باستخدام صيغة تكرارية لتحقيق الحل الأمثل.

  4. ما هي الفوائد والعيوب لكل من الخوارزمية الجشعة والبرمجة الديناميكية؟

    الخوارزمية الجشعة تكون أسرع وأسهل في التنفيذ ولكنها قد لا تعطي الحل الأمثل في جميع الحالات. البرمجة الديناميكية تضمن الوصول إلى الحل الأمثل ولكنها تتطلب وقتًا وذاكرة أكبر.


References used
No references
rate research

Read More

Earthmoving is the process of moving and processing soil from one location to another to alter an existing land surface into a desired configuration. Highways, dams, and airports are typical examples of heavy earthmoving projects. Over the years, con struction managers have devised ways to determine the quantities of material to be moved from one place to another. Various types of soil (soft earth, sand, hard clay, …, etc.) create different level of difficulty of the problem. Earthmoving problem has traditionally been solved using mass diagram method or variety of operational research techniques. However, existing models do not present realistic solution for the problem. Multiple soil types are usually found in cut sections and specific types of soil are required in fill sections. Some soil types in cut sections are not suitable to be used in fill sections and must be disposed of. In this paper a new mathematical programming model is developed to find-out the optimum allocation of earthmoving works. In developing the proposed model, different soil types are considered as well as variation of unit cost with earth quantities moved. Suggested borrow pits and/or disposal sites are introduced to minimize the overall earthmoving cost. The proposed model is entirely formulated using the programming capabilities of VB6 while LINDO is used to solve the formulated model to get the optimum solution. An example project is presented to show how the developed model can be implemented.
Molecular docking is a hard optimization problem that has been tackled in the past, demonstrating new and challenging results when looking for one objective . However, only a few papers can be found in the literature that deal with this problem by means of a multi-objective approach, and no experimental comparisons have been made in order to clarify which of them has the best overall performance. In this research, we use and compare, a set of representative multi-objective optimization algorithms. The approach followed is focused on optimizing the inter-molecular and intra-molecular energies as two main objectives to minimize.
Linear programming (LP, or linear optimization) is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements are represented by linear relationships. Linear programming is a special case of mathematical programming (mathematical optimization). More formally, linear programming is a technique for the optimization of a linear objective function, subject to linear equality and linear inequality constraints. Its feasible region is a convex polyhedron, which is a set defined as the intersection of finitely many half spaces, each of which is defined by a linear inequality. Its objective function is a real-valued affine function defined on this polyhedron. A linear programming algorithm finds a point in the polyhedron where this function has the smallest (or largest) value if such a point exists.
Multi-objective evolutionary algorithms are used in a wide range of fields to solve the issues of optimization, which require several conflicting objectives to be considered together. Basic evolutionary algorithm algorithms have several drawbacks, such as lack of a good criterion for termination, and lack of evidence of good convergence. A multi-objective hybrid evolutionary algorithm is often used to overcome these defects.
In this research, we study the material point motion, in the field of a homogeneous and unbounded, material rod. so we present the Hamiltonian formalization of the problem and study the orbits located in the plans perpendicular to the rod. We reve al the proprieties of symmetry of those orbits, and present the conditions to its closure. We also study the material point motion, in the field of a homogeneous and bounded, material rod. We present the Hamiltonian formalization of the problem, reveal the practicality of the plan of symmetry, and we studied the motion in this plan. We reveal the existence of unbounded or bounded planar orbits; some of those are closed. We also reveal that when the angular velocity isn't null, there are not orbits leading to a collision with the rod.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا