Do you want to publish a course? Click here

A Study in the Linear Programing and IT'S application in the Diet Problem

دراسة في مسائل البرمجة الخطية و بعض تطبيقاتها العملية في مسألة التغذية

5800   4   1001   0 ( 0 )
 Publication date 2014
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

Linear programming (LP, or linear optimization) is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements are represented by linear relationships. Linear programming is a special case of mathematical programming (mathematical optimization). More formally, linear programming is a technique for the optimization of a linear objective function, subject to linear equality and linear inequality constraints. Its feasible region is a convex polyhedron, which is a set defined as the intersection of finitely many half spaces, each of which is defined by a linear inequality. Its objective function is a real-valued affine function defined on this polyhedron. A linear programming algorithm finds a point in the polyhedron where this function has the smallest (or largest) value if such a point exists.


Artificial intelligence review:
Research summary
تتناول هذه الورقة البحثية مسائل البرمجة الخطية وتطبيقاتها العملية، مع التركيز على مسألة التغذية. البرمجة الخطية هي تقنية لتحقيق أفضل نتيجة في نموذج رياضي يتم تمثيل متطلباته بعلاقات خطية. يتمثل الهدف من البحث في صياغة المسائل الاقتصادية والعلمية كمسائل برمجة خطية، حيث يجب أن تتوفر بعض الأساسيات مثل وجود هدف يراد الوصول إليه، وجود متحولات قرار، ووجود قيود خطية. تتناول الورقة أيضاً تطور البرمجة الخطية منذ الحرب العالمية الثانية وتطبيقاتها في مختلف المجالات الصناعية والاقتصادية والعسكرية. كما تقدم الورقة أمثلة تطبيقية على البرمجة الخطية مثل مسألة المزج ومسألة التنظيم الغذائي. تُستخدم خوارزمية السمبلكس لحل هذه المسائل، وتُشرح خطواتها بالتفصيل. تُختتم الورقة بمناقشة بعض الخوارزميات الأخرى لحل البرامج الرياضية الخطية مثل طريقة القطوع الناقصة وطريقة كارماركار.
Critical review
دراسة نقدية: تقدم الورقة البحثية شرحاً وافياً ومفصلاً عن البرمجة الخطية وتطبيقاتها العملية، مما يجعلها مرجعاً جيداً للباحثين والطلاب. ومع ذلك، يمكن تحسين الورقة من خلال إضافة المزيد من الأمثلة العملية والتطبيقات الحديثة للبرمجة الخطية. كما أن الورقة تفتقر إلى مناقشة التحديات والمشاكل التي قد تواجه تطبيق البرمجة الخطية في الحياة العملية. بالإضافة إلى ذلك، يمكن تعزيز الورقة بمزيد من الرسوم البيانية والجداول لتوضيح الأفكار بشكل أفضل.
Questions related to the research
  1. ما هو الهدف الرئيسي من البحث؟

    الهدف الرئيسي من البحث هو صياغة المسائل الاقتصادية والعلمية كمسائل برمجة خطية وتحقيق أفضل نتيجة ممكنة من خلال تحسين دالة الهدف تحت قيود خطية.

  2. ما هي خوارزمية السمبلكس؟

    خوارزمية السمبلكس هي طريقة رياضية لحل مسائل البرمجة الخطية، حيث يتم البحث عن الحل الأمثل عن طريق التنقل بين ذروات منطقة الإمكانات حتى الوصول إلى الحل الأمثل.

  3. ما هي التطبيقات العملية للبرمجة الخطية المذكورة في الورقة؟

    تتضمن التطبيقات العملية المذكورة في الورقة مسألة المزج ومسألة التنظيم الغذائي، حيث يتم استخدام البرمجة الخطية لتحضير منتجات بأقل تكلفة ممكنة وتحقيق تنظيم غذائي صحيح بأقل التكاليف.

  4. ما هي التحديات التي تواجه تطبيق البرمجة الخطية في الحياة العملية؟

    من التحديات التي تواجه تطبيق البرمجة الخطية في الحياة العملية هي تعقيد الحسابات الرياضية، الحاجة إلى بيانات دقيقة وكاملة، وصعوبة صياغة بعض المسائل العملية كمسائل برمجة خطية.


References used
Alexander Schrijver (2003). Combinatorial optimization: polyhedra and efficiency. Springer
G.B.Dantzig. Linear programing and Extensions
H. P. Williams, Model Building in Mathematical Programming, Third revised Edition, 1990. (ModelingPrinceton University Press; Princeton, New Jersey, 1963
L.V. Kantorovich: A new method of solving some classes of extremal problems, Doklady Akad Sci USSR, 28, 1999, 211-214
rate research

Read More

Earthmoving is the process of moving and processing soil from one location to another to alter an existing land surface into a desired configuration. Highways, dams, and airports are typical examples of heavy earthmoving projects. Over the years, con struction managers have devised ways to determine the quantities of material to be moved from one place to another. Various types of soil (soft earth, sand, hard clay, …, etc.) create different level of difficulty of the problem. Earthmoving problem has traditionally been solved using mass diagram method or variety of operational research techniques. However, existing models do not present realistic solution for the problem. Multiple soil types are usually found in cut sections and specific types of soil are required in fill sections. Some soil types in cut sections are not suitable to be used in fill sections and must be disposed of. In this paper a new mathematical programming model is developed to find-out the optimum allocation of earthmoving works. In developing the proposed model, different soil types are considered as well as variation of unit cost with earth quantities moved. Suggested borrow pits and/or disposal sites are introduced to minimize the overall earthmoving cost. The proposed model is entirely formulated using the programming capabilities of VB6 while LINDO is used to solve the formulated model to get the optimum solution. An example project is presented to show how the developed model can be implemented.
This work deals with a new method for solving Integer Linear Programming Problems depending on a previous methods for solving these problems, such that Branch and Bound method and Cutting Planes method where this new method is a combination between t hem and we called it Cut and Branch method. The reasons which led to this combination between Cutting Planes method and Branch and Bound method are to defeat from the drawbacks of both methods and especially the big number of iterations and the long time for the solving and getting of a results between the results of these methods where the Cut and Branch method took the good properties from the both methods. And this work deals with solving a one problem of Integer Linear Programming Problems by Branch and Bound method and Cutting Planes method and the new method, and we made a programs on the computer for solving ten problems of Integer Linear Programming Problems by these methods then we got a good results and by that, the new method (Cut and Branch) became a good method for solving Integer Linear Programming Problems. The combination method which we doing in this research opened a big and wide field in solving Integer Linear Programming Problems and finding the best solutions for them where we did the combination method again between the new method (Cut and Branch) and the Cutting Planes method then we got a new method with a very good results and solutions.
In this paper we offer a new interactive method for solving Multiobjective linear programming problems. This method depends on forming the model for reducing the relative deviations of objective functions from their ideal standard, and dealing with the unsatisfying deviations of objective functions by reacting with decision maker. The results obtained from using this method were compared with many interactive methods as (STEM Method[6] – Improvement STEM Method[7] – Matejas-peric Method[8]). Numerical results indicate that the efficiency of purposed method comparing with the obtained results by using that methods at initial solution point and the other interactive points with decision maker.
In this research, we study the material point motion, in the field of a homogeneous and unbounded, material rod. so we present the Hamiltonian formalization of the problem and study the orbits located in the plans perpendicular to the rod. We reve al the proprieties of symmetry of those orbits, and present the conditions to its closure. We also study the material point motion, in the field of a homogeneous and bounded, material rod. We present the Hamiltonian formalization of the problem, reveal the practicality of the plan of symmetry, and we studied the motion in this plan. We reveal the existence of unbounded or bounded planar orbits; some of those are closed. We also reveal that when the angular velocity isn't null, there are not orbits leading to a collision with the rod.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا