البرمجة الخطية (LP أو التحسين الخطي) هو أسلوب لتحقيق أفضل النتائج ( مثل أقصى قدر من الأرباح أو بأقل تكلفة ) في النموذج الرياضي الذي يتم تمثيل العلاقات الخطية المتطلبة .البرمجة الخطية هي حالة خاصة من البرمجة الرياضية (الحسابية الأمثل) .أكثر رسميا، البرمجة الخطية هي تقنية لاستمثال الاستفادة من وظيفة الخطية الموضوعية
، و يخضع لخطية المساواة و عدم المساواة القيود الخطية .
المنطقة المجدية هي محدب الشكل المتعدد السطوح، و هي مجموعة تعرف بأنها تقاطع العديد من المساحات بشكل نصف محدود ، كل منها يعرف من قبل عدم المساواة الخطية .دالة الهدف هي وظيفة أفيني قيمتها الحقيقية تعريف على هذا الشكل المتعدد السطوح .خوارزمية البرمجة الخطية يتم إيجاد نقطة في هذا المتعدد الوجوه حيث تمتلك
أصغر (أو أكبر )القيمة في حالة وجود مثل هذه النقطة .
Linear programming (LP, or linear optimization) is a method to
achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements are represented by linear relationships. Linear programming is a special case of mathematical programming (mathematical optimization).
More formally, linear programming is a technique for the
optimization of a linear objective function, subject to linear equality and linear inequality constraints. Its feasible region is a convex polyhedron, which is a set defined as the intersection of finitely many half spaces, each of which is defined by a linear inequality. Its objective function is a real-valued affine function defined on this polyhedron. A linear programming algorithm finds a point in the polyhedron where this function has the smallest (or largest) value if such a point exists.
Artificial intelligence review:
Research summary
تتناول هذه الورقة البحثية مسائل البرمجة الخطية وتطبيقاتها العملية، مع التركيز على مسألة التغذية. البرمجة الخطية هي تقنية لتحقيق أفضل نتيجة في نموذج رياضي يتم تمثيل متطلباته بعلاقات خطية. يتمثل الهدف من البحث في صياغة المسائل الاقتصادية والعلمية كمسائل برمجة خطية، حيث يجب أن تتوفر بعض الأساسيات مثل وجود هدف يراد الوصول إليه، وجود متحولات قرار، ووجود قيود خطية. تتناول الورقة أيضاً تطور البرمجة الخطية منذ الحرب العالمية الثانية وتطبيقاتها في مختلف المجالات الصناعية والاقتصادية والعسكرية. كما تقدم الورقة أمثلة تطبيقية على البرمجة الخطية مثل مسألة المزج ومسألة التنظيم الغذائي. تُستخدم خوارزمية السمبلكس لحل هذه المسائل، وتُشرح خطواتها بالتفصيل. تُختتم الورقة بمناقشة بعض الخوارزميات الأخرى لحل البرامج الرياضية الخطية مثل طريقة القطوع الناقصة وطريقة كارماركار.
Critical review
دراسة نقدية: تقدم الورقة البحثية شرحاً وافياً ومفصلاً عن البرمجة الخطية وتطبيقاتها العملية، مما يجعلها مرجعاً جيداً للباحثين والطلاب. ومع ذلك، يمكن تحسين الورقة من خلال إضافة المزيد من الأمثلة العملية والتطبيقات الحديثة للبرمجة الخطية. كما أن الورقة تفتقر إلى مناقشة التحديات والمشاكل التي قد تواجه تطبيق البرمجة الخطية في الحياة العملية. بالإضافة إلى ذلك، يمكن تعزيز الورقة بمزيد من الرسوم البيانية والجداول لتوضيح الأفكار بشكل أفضل.
Questions related to the research
-
ما هو الهدف الرئيسي من البحث؟
الهدف الرئيسي من البحث هو صياغة المسائل الاقتصادية والعلمية كمسائل برمجة خطية وتحقيق أفضل نتيجة ممكنة من خلال تحسين دالة الهدف تحت قيود خطية.
-
ما هي خوارزمية السمبلكس؟
خوارزمية السمبلكس هي طريقة رياضية لحل مسائل البرمجة الخطية، حيث يتم البحث عن الحل الأمثل عن طريق التنقل بين ذروات منطقة الإمكانات حتى الوصول إلى الحل الأمثل.
-
ما هي التطبيقات العملية للبرمجة الخطية المذكورة في الورقة؟
تتضمن التطبيقات العملية المذكورة في الورقة مسألة المزج ومسألة التنظيم الغذائي، حيث يتم استخدام البرمجة الخطية لتحضير منتجات بأقل تكلفة ممكنة وتحقيق تنظيم غذائي صحيح بأقل التكاليف.
-
ما هي التحديات التي تواجه تطبيق البرمجة الخطية في الحياة العملية؟
من التحديات التي تواجه تطبيق البرمجة الخطية في الحياة العملية هي تعقيد الحسابات الرياضية، الحاجة إلى بيانات دقيقة وكاملة، وصعوبة صياغة بعض المسائل العملية كمسائل برمجة خطية.
References used
Alexander Schrijver (2003). Combinatorial optimization: polyhedra and efficiency. Springer
G.B.Dantzig. Linear programing and Extensions
H. P. Williams, Model Building in Mathematical Programming, Third revised Edition, 1990. (ModelingPrinceton University Press; Princeton, New Jersey, 1963
L.V. Kantorovich: A new method of solving some classes of extremal problems, Doklady Akad Sci USSR, 28, 1999, 211-214
Earthmoving is the process of moving and processing soil from one location to another to alter an existing land surface into a desired configuration. Highways, dams, and airports are typical examples of heavy earthmoving projects. Over the years, con
This work deals with a new method for solving Integer Linear Programming Problems depending on a previous methods for solving these problems, such that Branch and Bound method and Cutting Planes method where this new method is a combination between t
In this paper we offer a new interactive method for solving Multiobjective linear
programming problems. This method depends on forming the model for reducing the
relative deviations of objective functions from their ideal standard, and dealing with
In this research, we study the material point motion, in the field of a
homogeneous and unbounded, material rod. so we present the
Hamiltonian formalization of the problem and study the orbits
located in the plans perpendicular to the rod. We reve