Do you want to publish a course? Click here

Multi-Objective Optimization Algorithms to Solve Molecular Docking

تقييم خوارزميات الأمثلة متعددة الأهداف في حل مسألة ارتباط الجزيئات

1614   0   47   0 ( 0 )
 Publication date 2016
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

Molecular docking is a hard optimization problem that has been tackled in the past, demonstrating new and challenging results when looking for one objective . However, only a few papers can be found in the literature that deal with this problem by means of a multi-objective approach, and no experimental comparisons have been made in order to clarify which of them has the best overall performance. In this research, we use and compare, a set of representative multi-objective optimization algorithms. The approach followed is focused on optimizing the inter-molecular and intra-molecular energies as two main objectives to minimize.


Artificial intelligence review:
Research summary
تعتبر مسألة إيجاد الحل الأمثل لمسألة الارتباط الجزيئي بين المركبات من المسائل الصعبة. عند حل المسألة باستخدام الخوارزميات التي تتبع النهج الوحيد الهدف تكون النتائج متغيرة ومعقدة. يهدف هذا البحث إلى استخدام مجموعة من خوارزميات الأمثلة متعددة الأهداف والمقارنة بينها لحل مسألة ارتباط الجزيئات بين المركبات. تركز الطريقة المتبعة على الاستفادة المثلى من الطاقات بين الجزيئات Einter وطاقات الجزيئات الداخلية Eintra على اعتبارهما هدفين من الأهداف الرئيسية المراد تقليل قيمتهما. الخوارزميات المستخدمة هي: الخوارزمية الجينية (NSGA) والخوارزمية الجينية القياسية (ssNSGA) وخوارزمية ذكاء السرب (PSO) وخوارزمية التطور التفاضلية المعممة (GDE3) والخوارزمية التطورية متعددة الأهداف (MOEA / D) وخوارزمية SMS-EMOA. تم تقييم أداء الخوارزميات باستخدام مؤشرات الجودة التي تهدف إلى قياس التقارب (Convergence) وتوزيع الحلول (Diversity). بالإضافة إلى إجراء مقارنة مع خوارزمية أخرى تتبع النهج الوحيد الهدف ليتم استخدامها كمرجع (الخوارزمية الجينية Lamarckian-LGA التي تقدمها أداة AutoDock). أظهرت النتائج أن خوارزمية SMPSO تقدم أفضل أداء، بينما أظهرت خوارزمية GDE3 و MOEA/D أداءً جيداً من ناحية التقارب وتوزيع الحلول. يمكن استخدام النهج متعدد الأهداف للحصول على مجموعة واسعة من الحلول التي يمكن اختيارها وفقاً لوزن الطاقات Einter و Eintra، بدلاً من الحصول على حل واحد فقط من AutoDock.
Critical review
دراسة نقدية: على الرغم من أن البحث يقدم مساهمة قيمة في مجال استخدام الخوارزميات متعددة الأهداف لحل مسألة ارتباط الجزيئات، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، كان من الممكن توسيع نطاق الدراسة لتشمل مجموعة أكبر من المركبات الجزيئية لتحسين دقة النتائج. ثانياً، لم يتم التطرق بشكل كافٍ إلى تأثير المتغيرات البيئية المختلفة على أداء الخوارزميات. ثالثاً، كان من الممكن تقديم تحليل أكثر تفصيلاً حول كيفية تحسين أداء الخوارزميات المستخدمة. أخيراً، كان من الممكن تقديم توصيات أكثر وضوحاً حول كيفية تطبيق النتائج في الأبحاث المستقبلية.
Questions related to the research
  1. ما هي الأهداف الرئيسية التي يهدف البحث إلى تحقيقها؟

    يهدف البحث إلى مقارنة أداء ست خوارزميات متعددة الأهداف عند استخدامها في حل مسألة ارتباط الجزيئات، مع التركيز على تقليل الطاقات بين الجزيئات Einter وطاقات الجزيئات الداخلية Eintra.

  2. ما هي الخوارزميات المستخدمة في هذا البحث؟

    الخوارزميات المستخدمة هي: الخوارزمية الجينية (NSGA)، الخوارزمية الجينية القياسية (ssNSGA)، خوارزمية ذكاء السرب (PSO)، خوارزمية التطور التفاضلية المعممة (GDE3)، الخوارزمية التطورية متعددة الأهداف (MOEA/D)، وخوارزمية SMS-EMOA.

  3. ما هي مؤشرات الجودة المستخدمة لتقييم أداء الخوارزميات؟

    تم استخدام مؤشرين لتقييم أداء الخوارزميات: مؤشر Hyper-Volume لقياس التقارب وتوزيع الحلول، ومؤشر Unary additive epsilon لقياس التقارب فقط.

  4. ما هي الخوارزمية التي أظهرت أفضل أداء وفقاً للنتائج؟

    أظهرت النتائج أن خوارزمية SMPSO تقدم أفضل أداء وفقاً لمؤشرات الجودة المستخدمة.


References used
Goodsell- D.S., Morris- G.M, 1998- Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function- pp.1639–166
Roy- R, Oduguwa- A., Tiwari- A, 2006- Multi-objective optimisation of the protein-ligand docking problem in drug discovery- Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation- Seattle- USA- pp. 1793–1800
Grosdidier- A., Zoete- V.- Michielin- O, 2007- EADock: Docking of small molecules into protein active sites with a multi-objective evolutionary optimization- pp. 1010–1025
rate research

Read More

Multi-objective evolutionary algorithms are used in a wide range of fields to solve the issues of optimization, which require several conflicting objectives to be considered together. Basic evolutionary algorithm algorithms have several drawbacks, such as lack of a good criterion for termination, and lack of evidence of good convergence. A multi-objective hybrid evolutionary algorithm is often used to overcome these defects.
In this research, we are studying the possibility of contribution in solving the multi-objective vehicle Routing problem with time windows , that is one of the optimization problems of the NP-hard type , This problem has attracted a lot of attenti on now because of its real life applications. Moreover, We will also introduced an algorithm called hybrid algorithm (HA) which depends on integrates between Multiple objective ant colony optimisation (MOACO) and tabu search (TS) algorithm based on the Pareto optimization , and compare the presented approach is the developer with standard tests to demonstrate the applicability and efficiency.
In the Multi-objective Traveling Salesman Problem (moTSP) simultaneous optimization of more than one objective functions is required. This paper proposes hybrid algorithm to solve the multiobjectives Traveling Salesman problem through the integration of the ant colony optimization algorithm with the Genetic algorithm.
Modelling and understanding dialogues in a conversation depends on identifying the user intent from the given text. Unknown or new intent detection is a critical task, as in a realistic scenario a user intent may frequently change over time and diver t even to an intent previously not encountered. This task of separating the unknown intent samples from known intents one is challenging as the unknown user intent can range from intents similar to the predefined intents to something completely different. Prior research on intent discovery often consider it as a classification task where an unknown intent can belong to a predefined set of known intent classes. In this paper we tackle the problem of detecting a completely unknown intent without any prior hints about the kind of classes belonging to unknown intents. We propose an effective post-processing method using multi-objective optimization to tune an existing neural network based intent classifier and make it capable of detecting unknown intents. We perform experiments using existing state-of-the-art intent classifiers and use our method on top of them for unknown intent detection. Our experiments across different domains and real-world datasets show that our method yields significant improvements compared with the state-of-the-art methods for unknown intent detection.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا