تعتبر مسألة إيجاد الحل الأمثل لمسألة الارتباط الجزيئي بين المركبات من المسائل
الصعبة. عند حل المسألة باستخدام الخوارزميات التي تتبع النهج الوحيد الهدف تكون
النتائج متغيرة و معقدة. لا يمكن العثور إلاّ على عدد قليل من الأوراق البحثية التي تتناول
هذه المسألة عن طريق اتباع النهج متعدد الأهداف، كما لم يتم بذل الجهد الكافي لإجراء
مقارنات تجريبية في سبيل توضيح أفضل أداء لأفضل خوارزمية. يكمن هدف هذا البحث
في استخدام مجموعة من خوارزميات الأمثلة متعددة الأهداف و المقارنة بينها لحل مسألة
ارتباط الجزيئات بين المركبات.
Molecular docking is a hard optimization problem that has been
tackled in the past, demonstrating new and challenging results when
looking for one objective . However, only a few papers can be
found in the literature that deal with this problem by means of a
multi-objective approach, and no experimental comparisons have
been made in order to clarify which of them has the best overall
performance. In this research, we use and compare, a set of
representative multi-objective optimization algorithms. The
approach followed is focused on optimizing the inter-molecular and
intra-molecular energies as two main objectives to minimize.
Artificial intelligence review:
Research summary
تعتبر مسألة إيجاد الحل الأمثل لمسألة الارتباط الجزيئي بين المركبات من المسائل الصعبة. عند حل المسألة باستخدام الخوارزميات التي تتبع النهج الوحيد الهدف تكون النتائج متغيرة ومعقدة. يهدف هذا البحث إلى استخدام مجموعة من خوارزميات الأمثلة متعددة الأهداف والمقارنة بينها لحل مسألة ارتباط الجزيئات بين المركبات. تركز الطريقة المتبعة على الاستفادة المثلى من الطاقات بين الجزيئات Einter وطاقات الجزيئات الداخلية Eintra على اعتبارهما هدفين من الأهداف الرئيسية المراد تقليل قيمتهما. الخوارزميات المستخدمة هي: الخوارزمية الجينية (NSGA) والخوارزمية الجينية القياسية (ssNSGA) وخوارزمية ذكاء السرب (PSO) وخوارزمية التطور التفاضلية المعممة (GDE3) والخوارزمية التطورية متعددة الأهداف (MOEA / D) وخوارزمية SMS-EMOA. تم تقييم أداء الخوارزميات باستخدام مؤشرات الجودة التي تهدف إلى قياس التقارب (Convergence) وتوزيع الحلول (Diversity). بالإضافة إلى إجراء مقارنة مع خوارزمية أخرى تتبع النهج الوحيد الهدف ليتم استخدامها كمرجع (الخوارزمية الجينية Lamarckian-LGA التي تقدمها أداة AutoDock). أظهرت النتائج أن خوارزمية SMPSO تقدم أفضل أداء، بينما أظهرت خوارزمية GDE3 و MOEA/D أداءً جيداً من ناحية التقارب وتوزيع الحلول. يمكن استخدام النهج متعدد الأهداف للحصول على مجموعة واسعة من الحلول التي يمكن اختيارها وفقاً لوزن الطاقات Einter و Eintra، بدلاً من الحصول على حل واحد فقط من AutoDock.
Critical review
دراسة نقدية: على الرغم من أن البحث يقدم مساهمة قيمة في مجال استخدام الخوارزميات متعددة الأهداف لحل مسألة ارتباط الجزيئات، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، كان من الممكن توسيع نطاق الدراسة لتشمل مجموعة أكبر من المركبات الجزيئية لتحسين دقة النتائج. ثانياً، لم يتم التطرق بشكل كافٍ إلى تأثير المتغيرات البيئية المختلفة على أداء الخوارزميات. ثالثاً، كان من الممكن تقديم تحليل أكثر تفصيلاً حول كيفية تحسين أداء الخوارزميات المستخدمة. أخيراً، كان من الممكن تقديم توصيات أكثر وضوحاً حول كيفية تطبيق النتائج في الأبحاث المستقبلية.
Questions related to the research
-
ما هي الأهداف الرئيسية التي يهدف البحث إلى تحقيقها؟
يهدف البحث إلى مقارنة أداء ست خوارزميات متعددة الأهداف عند استخدامها في حل مسألة ارتباط الجزيئات، مع التركيز على تقليل الطاقات بين الجزيئات Einter وطاقات الجزيئات الداخلية Eintra.
-
ما هي الخوارزميات المستخدمة في هذا البحث؟
الخوارزميات المستخدمة هي: الخوارزمية الجينية (NSGA)، الخوارزمية الجينية القياسية (ssNSGA)، خوارزمية ذكاء السرب (PSO)، خوارزمية التطور التفاضلية المعممة (GDE3)، الخوارزمية التطورية متعددة الأهداف (MOEA/D)، وخوارزمية SMS-EMOA.
-
ما هي مؤشرات الجودة المستخدمة لتقييم أداء الخوارزميات؟
تم استخدام مؤشرين لتقييم أداء الخوارزميات: مؤشر Hyper-Volume لقياس التقارب وتوزيع الحلول، ومؤشر Unary additive epsilon لقياس التقارب فقط.
-
ما هي الخوارزمية التي أظهرت أفضل أداء وفقاً للنتائج؟
أظهرت النتائج أن خوارزمية SMPSO تقدم أفضل أداء وفقاً لمؤشرات الجودة المستخدمة.
References used
Goodsell- D.S., Morris- G.M, 1998- Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function- pp.1639–166
Roy- R, Oduguwa- A., Tiwari- A, 2006- Multi-objective optimisation of the protein-ligand docking problem in drug discovery- Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation- Seattle- USA- pp. 1793–1800
Grosdidier- A., Zoete- V.- Michielin- O, 2007- EADock: Docking of small molecules into protein active sites with a multi-objective evolutionary optimization- pp. 1010–1025
Multi-objective evolutionary algorithms are used in a wide range
of fields to solve the issues of optimization, which require several
conflicting objectives to be considered together. Basic evolutionary
algorithm algorithms have several drawbacks,
In this research, we are studying the possibility of contribution
in solving the multi-objective vehicle Routing problem with time
windows , that is one of the optimization problems of the NP-hard
type , This problem has attracted a lot of attenti
In the Multi-objective Traveling Salesman Problem (moTSP)
simultaneous optimization of more than one objective functions is
required. This paper proposes hybrid algorithm to solve the multiobjectives
Traveling Salesman problem through the integration of
the ant colony optimization algorithm with the Genetic algorithm.
Modelling and understanding dialogues in a conversation depends on identifying the user intent from the given text. Unknown or new intent detection is a critical task, as in a realistic scenario a user intent may frequently change over time and diver