Do you want to publish a course? Click here

Optimization Of Earthmoving Problem With Multiple Soil Types Using Linear Programing

أمثلة مسألة توزيع الكتل الترابية متعددة الأنواع باستخدام البرمجة الخطية

1312   0   71   0 ( 0 )
 Publication date 2016
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

Earthmoving is the process of moving and processing soil from one location to another to alter an existing land surface into a desired configuration. Highways, dams, and airports are typical examples of heavy earthmoving projects. Over the years, construction managers have devised ways to determine the quantities of material to be moved from one place to another. Various types of soil (soft earth, sand, hard clay, …, etc.) create different level of difficulty of the problem. Earthmoving problem has traditionally been solved using mass diagram method or variety of operational research techniques. However, existing models do not present realistic solution for the problem. Multiple soil types are usually found in cut sections and specific types of soil are required in fill sections. Some soil types in cut sections are not suitable to be used in fill sections and must be disposed of. In this paper a new mathematical programming model is developed to find-out the optimum allocation of earthmoving works. In developing the proposed model, different soil types are considered as well as variation of unit cost with earth quantities moved. Suggested borrow pits and/or disposal sites are introduced to minimize the overall earthmoving cost. The proposed model is entirely formulated using the programming capabilities of VB6 while LINDO is used to solve the formulated model to get the optimum solution. An example project is presented to show how the developed model can be implemented.


Artificial intelligence review:
Research summary
يتناول البحث مشكلة توزيع الكتل الترابية في المشاريع الهندسية مثل السدود والطرق والمطارات باستخدام البرمجة الخطية. يركز البحث على تطوير نموذج رياضي يمكنه التعامل مع وجود أنواع متعددة من التربة في أماكن الحفر والردم، مع الأخذ بعين الاعتبار التكلفة المتغيرة لنقل التربة بناءً على كمياتها ومسافات النقل. تم استخدام برنامج (LINDO) لحل النموذج الرياضي وتقديم الحل الأمثل. كما تم إعداد برنامج حاسوبي لتكوين المشكلة بشكل قياسي. يهدف النموذج إلى تقليل التكلفة الإجمالية لنقل التربة من خلال اقتراح أماكن جديدة للإعارة ورمي الفائض، وتقديم عدة عروض أسعار للتربة الموردة بناءً على الكميات المطلوبة. تم اختبار النموذج على مثال افتراضي يحتوي على جميع الحالات المدروسة، وأظهرت النتائج فعالية النموذج في تقديم حلول مثلى لتوزيع الكتل الترابية بأقل تكلفة ممكنة.
Critical review
دراسة نقدية: يعد البحث خطوة هامة في مجال إدارة المشاريع الهندسية، حيث يقدم نموذجاً رياضياً متكاملاً يأخذ بعين الاعتبار العديد من العوامل المؤثرة في تكلفة نقل التربة. ومع ذلك، يمكن تحسين البحث من خلال تقديم دراسات حالة واقعية بدلاً من الأمثلة الافتراضية فقط، مما يعزز من موثوقية النتائج. كما يمكن توسيع النموذج ليشمل عوامل بيئية واجتماعية قد تؤثر على اختيار أماكن الإعارة ورمي الفائض. بالإضافة إلى ذلك، يمكن تحسين واجهة البرنامج الحاسوبي لتكون أكثر تفاعلية وسهلة الاستخدام لمديري المشاريع.
Questions related to the research
  1. ما هي الأهداف الرئيسية لهذا البحث؟

    يهدف البحث إلى تطوير نموذج رياضي لتوزيع الكتل الترابية بين أجزاء المشروع المختلفة بأقل تكلفة ممكنة، مع الأخذ بعين الاعتبار وجود أنواع متعددة من التربة وتقديم عدة عروض أسعار للتربة الموردة بناءً على الكميات المطلوبة.

  2. ما هي الأدوات البرمجية المستخدمة في هذا البحث؟

    تم استخدام برنامج (LINDO) لحل النموذج الرياضي، بالإضافة إلى تطوير برنامج حاسوبي باستخدام Visual Basic لتكوين المشكلة بشكل قياسي وتقديم الحل الأمثل.

  3. ما هي العوامل التي يأخذها النموذج المطور بعين الاعتبار؟

    يأخذ النموذج المطور بعين الاعتبار وجود أنواع متعددة من التربة، التكلفة المتغيرة لنقل التربة بناءً على الكميات ومسافات النقل، واقتراح أماكن جديدة للإعارة ورمي الفائض لتقليل التكلفة الإجمالية.

  4. ما هي التوصيات التي يقدمها البحث؟

    يوصي البحث باستخدام النموذج المقترح من قبل مديري المشاريع لأنه يزودهم بأداة فعالة وسهلة الاستخدام لمعرفة كميات وتكاليف نقل التربة بالشكل الأمثل في المشروع.


References used
BRENTWOD, T. B. C., and WEBER. S. L. (1999). “Effect of Truck Payload Weight on Production.” J. of Construction Engrg. and Mngt., ASCE, 125(1), 1-7
EASA, S. M. (1987). “Earthwork Allocations with Nonconstant Unit Costs.” J. of Construction Engrg. and Mngt., ASCE, 113(1), 34-50
JARAD. F. (2002). “Analysis of Earthmoving Systems by Optimization.” Faculty of Engineering, Alexandria University, Egypt
rate research

Read More

Linear programming (LP, or linear optimization) is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements are represented by linear relationships. Linear programming is a special case of mathematical programming (mathematical optimization). More formally, linear programming is a technique for the optimization of a linear objective function, subject to linear equality and linear inequality constraints. Its feasible region is a convex polyhedron, which is a set defined as the intersection of finitely many half spaces, each of which is defined by a linear inequality. Its objective function is a real-valued affine function defined on this polyhedron. A linear programming algorithm finds a point in the polyhedron where this function has the smallest (or largest) value if such a point exists.
This paper presents a method for finding online adaptive optimal controllers for continuous-time linear systems without knowing the system dynamical matrices. The proposed method employs one of Intelligent Operations Research Techniques, this tech nique is the adaptive dynamic programming, to iteratively solve the algebraic Riccati equation using the online information of state and input, without requiring the a priori knowledge of the system dynamics. In addition, all iterations can be conducted by using repeatedly the same state and input information on some fixed time intervals. A practical online algorithm is developed in this paper, and is applied to the controller design for a turbocharged diesel engine with exhaust gas recirculation.
In this paper we offer a new interactive method for solving Multiobjective linear programming problems. This method depends on forming the model for reducing the relative deviations of objective functions from their ideal standard, and dealing with the unsatisfying deviations of objective functions by reacting with decision maker. The results obtained from using this method were compared with many interactive methods as (STEM Method[6] – Improvement STEM Method[7] – Matejas-peric Method[8]). Numerical results indicate that the efficiency of purposed method comparing with the obtained results by using that methods at initial solution point and the other interactive points with decision maker.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا