Do you want to publish a course? Click here

Scalable Font Reconstruction with Dual Latent Manifolds

إعادة إعمار خط قابل للتطوير مع فتحات كامنة مزدوجة

311   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

We propose a deep generative model that performs typography analysis and font reconstruction by learning disentangled manifolds of both font style and character shape. Our approach enables us to massively scale up the number of character types we can effectively model compared to previous methods. Specifically, we infer separate latent variables representing character and font via a pair of inference networks which take as input sets of glyphs that either all share a character type, or belong to the same font. This design allows our model to generalize to characters that were not observed during training time, an important task in light of the relative sparsity of most fonts. We also put forward a new loss, adapted from prior work that measures likelihood using an adaptive distribution in a projected space, resulting in more natural images without requiring a discriminator. We evaluate on the task of font reconstruction over various datasets representing character types of many languages, and compare favorably to modern style transfer systems according to both automatic and manually-evaluated metrics.



References used
https://aclanthology.org/
rate research

Read More

We propose a multi-task, probabilistic approach to facilitate distantly supervised relation extraction by bringing closer the representations of sentences that contain the same Knowledge Base pairs. To achieve this, we bias the latent space of senten ces via a Variational Autoencoder (VAE) that is trained jointly with a relation classifier. The latent code guides the pair representations and influences sentence reconstruction. Experimental results on two datasets created via distant supervision indicate that multi-task learning results in performance benefits. Additional exploration of employing Knowledge Base priors into theVAE reveals that the sentence space can be shifted towards that of the Knowledge Base, offering interpretability and further improving results.
Historical linguists have identified regularities in the process of historic sound change. The comparative method utilizes those regularities to reconstruct proto-words based on observed forms in daughter languages. Can this process be efficiently au tomated? We address the task of proto-word reconstruction, in which the model is exposed to cognates in contemporary daughter languages, and has to predict the proto word in the ancestor language. We provide a novel dataset for this task, encompassing over 8,000 comparative entries, and show that neural sequence models outperform conventional methods applied to this task so far. Error analysis reveals a variability in the ability of neural model to capture different phonological changes, correlating with the complexity of the changes. Analysis of learned embeddings reveals the models learn phonologically meaningful generalizations, corresponding to well-attested phonological shifts documented by historical linguistics.
We present a fast and scalable architecture called Explicit Modular Decomposition (EMD), in which we incorporate both classification-based and extraction-based methods and design four modules (for clas- sification and sequence labelling) to jointly e xtract dialogue states. Experimental results based on the MultiWoz 2.0 dataset validates the superiority of our proposed model in terms of both complexity and scalability when compared to the state-of-the-art methods, especially in the scenario of multi-domain dialogues entangled with many turns of utterances.
This research includes a geodetic study for the rehabilitation of damaged bridge cranes axes, its reconstruction and calibration in order to invest in the production process. The beginning was devoted to studying the types of bridge cranes used in large factories, geodetic methods used in their construction, and the conditions that must be achieved by axes. Based on the previous conditions, we have proposed a geodetic method to rehabilitate cranes. Also, a computer program has been prepared to implement the proposed mechanism by (mat lab). Testing the proposed method I has been done with the program on actual examples. The program was tested in two main cases: -First: When installing bridge cranes axes, -Second: In the periodic monitoring (systematic control) for bridge cranes. The research has proved the possibility of using the proposed method in rehabilitation, installation, periodic monitoring. It also has showed the efficiency of the proposed computer program.
Joint entity and relation extraction is challenging due to the complex interaction of interaction between named entity recognition and relation extraction. Although most existing works tend to jointly train these two tasks through a shared network, t hey fail to fully utilize the interdependence between entity types and relation types. In this paper, we design a novel synchronous dual network (SDN) with cross-type attention via separately and interactively considering the entity types and relation types. On the one hand, SDN adopts two isomorphic bi-directional type-attention LSTM to encode the entity type enhanced representations and the relation type enhanced representations, respectively. On the other hand, SDN explicitly models the interdependence between entity types and relation types via cross-type attention mechanism. In addition, we also propose a new multi-task learning strategy via modeling the interaction of two types of information. Experiments on NYT and WebNLG datasets verify the effectiveness of the proposed model, achieving state-of-the-art performance.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا