إن كيان مشترك واستخراج العلاقات يمثل تحديا بسبب التفاعل المعقد للتفاعل بين التعرف على الكيان المسمى واستخراج العلاقة. على الرغم من أن معظم الأعمال القائمة تميل إلى تدريب هذه المهامتين المشتركين من خلال شبكة مشتركة، إلا أنها تفشل في الاستفادة الكاملة من الترابط بين أنواع الكيان وأنواع العلاقات. في هذه الورقة، نقوم بتصميم شبكة مزدوجة متزامنة رواية (SDN) مع اهتمام عبر النوع عبر الانتباه بشكل منفصل وتفاعي تفاعلي أنواع الكيان وأنواع العلاقات. من ناحية، يعتمد SDN اثنين من النوع BI اتجاهي ISOMORPHIC LSTM لترميز التمثيلات المحسنة نوع الكيان والتمثيلات المحسنة نوع العلاقة، على التوالي. من ناحية أخرى، نماذج SDN صراحة الترابط بين أنواع الكيان وأنواع العلاقات عبر آلية الاهتمام عبر النوع. بالإضافة إلى ذلك، نقترح أيضا استراتيجية تعليمية متعددة المهام الجديدة عبر النمذجة تفاعل نوعين من المعلومات. تجارب مجموعات بيانات NYT و WEBNLG تحقق من فعالية النموذج المقترح، وتحقيق الأداء الحديث في الفن.
Joint entity and relation extraction is challenging due to the complex interaction of interaction between named entity recognition and relation extraction. Although most existing works tend to jointly train these two tasks through a shared network, they fail to fully utilize the interdependence between entity types and relation types. In this paper, we design a novel synchronous dual network (SDN) with cross-type attention via separately and interactively considering the entity types and relation types. On the one hand, SDN adopts two isomorphic bi-directional type-attention LSTM to encode the entity type enhanced representations and the relation type enhanced representations, respectively. On the other hand, SDN explicitly models the interdependence between entity types and relation types via cross-type attention mechanism. In addition, we also propose a new multi-task learning strategy via modeling the interaction of two types of information. Experiments on NYT and WebNLG datasets verify the effectiveness of the proposed model, achieving state-of-the-art performance.
References used
https://aclanthology.org/
In joint entity and relation extraction, existing work either sequentially encode task-specific features, leading to an imbalance in inter-task feature interaction where features extracted later have no direct contact with those that come first. Or t
The way information is generated and disseminated has changed dramatically over the last decade. Identifying the political perspective shaping the way events are discussed in the media becomes more important due to the sharp increase in the number of
Knowledge Graphs (KGs) have become increasingly popular in the recent years. However, as knowledge constantly grows and changes, it is inevitable to extend existing KGs with entities that emerged or became relevant to the scope of the KG after its cr
To alleviate label scarcity in Named Entity Recognition (NER) task, distantly supervised NER methods are widely applied to automatically label data and identify entities. Although the human effort is reduced, the generated incomplete and noisy annota
Multi-label document classification (MLDC) problems can be challenging, especially for long documents with a large label set and a long-tail distribution over labels. In this paper, we present an effective convolutional attention network for the MLDC