Do you want to publish a course? Click here

Ab Antiquo: Neural Proto-language Reconstruction

AB Antiquo: إعادة إعمار اللغة العصبية

192   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Historical linguists have identified regularities in the process of historic sound change. The comparative method utilizes those regularities to reconstruct proto-words based on observed forms in daughter languages. Can this process be efficiently automated? We address the task of proto-word reconstruction, in which the model is exposed to cognates in contemporary daughter languages, and has to predict the proto word in the ancestor language. We provide a novel dataset for this task, encompassing over 8,000 comparative entries, and show that neural sequence models outperform conventional methods applied to this task so far. Error analysis reveals a variability in the ability of neural model to capture different phonological changes, correlating with the complexity of the changes. Analysis of learned embeddings reveals the models learn phonologically meaningful generalizations, corresponding to well-attested phonological shifts documented by historical linguistics.

References used
https://aclanthology.org/
rate research

Read More

We propose a deep generative model that performs typography analysis and font reconstruction by learning disentangled manifolds of both font style and character shape. Our approach enables us to massively scale up the number of character types we can effectively model compared to previous methods. Specifically, we infer separate latent variables representing character and font via a pair of inference networks which take as input sets of glyphs that either all share a character type, or belong to the same font. This design allows our model to generalize to characters that were not observed during training time, an important task in light of the relative sparsity of most fonts. We also put forward a new loss, adapted from prior work that measures likelihood using an adaptive distribution in a projected space, resulting in more natural images without requiring a discriminator. We evaluate on the task of font reconstruction over various datasets representing character types of many languages, and compare favorably to modern style transfer systems according to both automatic and manually-evaluated metrics.
This research includes a geodetic study for the rehabilitation of damaged bridge cranes axes, its reconstruction and calibration in order to invest in the production process. The beginning was devoted to studying the types of bridge cranes used in large factories, geodetic methods used in their construction, and the conditions that must be achieved by axes. Based on the previous conditions, we have proposed a geodetic method to rehabilitate cranes. Also, a computer program has been prepared to implement the proposed mechanism by (mat lab). Testing the proposed method I has been done with the program on actual examples. The program was tested in two main cases: -First: When installing bridge cranes axes, -Second: In the periodic monitoring (systematic control) for bridge cranes. The research has proved the possibility of using the proposed method in rehabilitation, installation, periodic monitoring. It also has showed the efficiency of the proposed computer program.
A private learning scheme TextHide was recently proposed to protect the private text data during the training phase via so-called instance encoding. We propose a novel reconstruction attack to break TextHide by recovering the private training data, a nd thus unveil the privacy risks of instance encoding. We have experimentally validated the effectiveness of the reconstruction attack with two commonly-used datasets for sentence classification. Our attack would advance the development of privacy preserving machine learning in the context of natural language processing.
Recent progress in language modeling has been driven not only by advances in neural architectures, but also through hardware and optimization improvements. In this paper, we revisit the neural probabilistic language model (NPLM) of Bengio et al. (200 3), which simply concatenates word embeddings within a fixed window and passes the result through a feed-forward network to predict the next word. When scaled up to modern hardware, this model (despite its many limitations) performs much better than expected on word-level language model benchmarks. Our analysis reveals that the NPLM achieves lower perplexity than a baseline Transformer with short input contexts but struggles to handle long-term dependencies. Inspired by this result, we modify the Transformer by replacing its first self-attention layer with the NPLM's local concatenation layer, which results in small but consistent perplexity decreases across three word-level language modeling datasets.
We propose a multi-task, probabilistic approach to facilitate distantly supervised relation extraction by bringing closer the representations of sentences that contain the same Knowledge Base pairs. To achieve this, we bias the latent space of senten ces via a Variational Autoencoder (VAE) that is trained jointly with a relation classifier. The latent code guides the pair representations and influences sentence reconstruction. Experimental results on two datasets created via distant supervision indicate that multi-task learning results in performance benefits. Additional exploration of employing Knowledge Base priors into theVAE reveals that the sentence space can be shifted towards that of the Knowledge Base, offering interpretability and further improving results.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا