Do you want to publish a course? Click here

Distantly Supervised Relation Extraction with Sentence Reconstruction and Knowledge Base Priors

استخراج العلاقات بشكل مسيير مع إعادة إعمار الجملة وبظر قاعدة المعرفة

326   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

We propose a multi-task, probabilistic approach to facilitate distantly supervised relation extraction by bringing closer the representations of sentences that contain the same Knowledge Base pairs. To achieve this, we bias the latent space of sentences via a Variational Autoencoder (VAE) that is trained jointly with a relation classifier. The latent code guides the pair representations and influences sentence reconstruction. Experimental results on two datasets created via distant supervision indicate that multi-task learning results in performance benefits. Additional exploration of employing Knowledge Base priors into theVAE reveals that the sentence space can be shifted towards that of the Knowledge Base, offering interpretability and further improving results.



References used
https://aclanthology.org/
rate research

Read More

Distantly supervised relation extraction is widely used in the construction of knowledge bases due to its high efficiency. However, the automatically obtained instances are of low quality with numerous irrelevant words. In addition, the strong assump tion of distant supervision leads to the existence of noisy sentences in the sentence bags. In this paper, we propose a novel Multi-Layer Revision Network (MLRN) which alleviates the effects of word-level noise by emphasizing inner-sentence correlations before extracting relevant information within sentences. Then, we devise a balanced and noise-resistant Confidence-based Multi-Instance Learning (CMIL) method to filter out noisy sentences as well as assign proper weights to relevant ones. Extensive experiments on two New York Times (NYT) datasets demonstrate that our approach achieves significant improvements over the baselines.
Distantly supervised models are very popular for relation extraction since we can obtain a large amount of training data using the distant supervision method without human annotation. In distant supervision, a sentence is considered as a source of a tuple if the sentence contains both entities of the tuple. However, this condition is too permissive and does not guarantee the presence of relevant relation-specific information in the sentence. As such, distantly supervised training data contains much noise which adversely affects the performance of the models. In this paper, we propose a self-ensemble filtering mechanism to filter out the noisy samples during the training process. We evaluate our proposed framework on the New York Times dataset which is obtained via distant supervision. Our experiments with multiple state-of-the-art neural relation extraction models show that our proposed filtering mechanism improves the robustness of the models and increases their F1 scores.
In relation extraction, distant supervision is widely used to automatically label a large-scale training dataset by aligning a knowledge base with unstructured text. Most existing studies in this field have assumed there is a great deal of centralize d unstructured text. However, in practice, texts are usually distributed on different platforms and cannot be centralized due to privacy restrictions. Therefore, it is worthwhile to investigate distant supervision in the federated learning paradigm, which decouples the training of the model from the need for direct access to raw texts. However, overcoming label noise of distant supervision becomes more difficult in federated settings, because texts containing the same entity pair scatter around different platforms. In this paper, we propose a federated denoising framework to suppress label noise in federated settings. The key of this framework is a multiple instance learning based denoising method that is able to select reliable sentences via cross-platform collaboration. Various experiments on New York Times dataset and miRNA gene regulation relation dataset demonstrate the effectiveness of the proposed method.
Argument pair extraction (APE) aims to extract interactive argument pairs from two passages of a discussion. Previous work studied this task in the context of peer review and rebuttal, and decomposed it into a sequence labeling task and a sentence re lation classification task. However, despite the promising performance, such an approach obtains the argument pairs implicitly by the two decomposed tasks, lacking explicitly modeling of the argument-level interactions between argument pairs. In this paper, we tackle the APE task by a mutual guidance framework, which could utilize the information of an argument in one passage to guide the identification of arguments that can form pairs with it in another passage. In this manner, two passages can mutually guide each other in the process of APE. Furthermore, we propose an inter-sentence relation graph to effectively model the inter-relations between two sentences and thus facilitates the extraction of argument pairs. Our proposed method can better represent the holistic argument-level semantics and thus explicitly capture the complex correlations between argument pairs. Experimental results show that our approach significantly outperforms the current state-of-the-art model.
To alleviate human efforts from obtaining large-scale annotations, Semi-Supervised Relation Extraction methods aim to leverage unlabeled data in addition to learning from limited samples. Existing self-training methods suffer from the gradual drift p roblem, where noisy pseudo labels on unlabeled data are incorporated during training. To alleviate the noise in pseudo labels, we propose a method called MetaSRE, where a Relation Label Generation Network generates accurate quality assessment on pseudo labels by (meta) learning from the successful and failed attempts on Relation Classification Network as an additional meta-objective. To reduce the influence of noisy pseudo labels, MetaSRE adopts a pseudo label selection and exploitation scheme which assesses pseudo label quality on unlabeled samples and only exploits high-quality pseudo labels in a self-training fashion to incrementally augment labeled samples for both robustness and accuracy. Experimental results on two public datasets demonstrate the effectiveness of the proposed approach.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا