تم تلخيص الاستخراج هو الدعامة الرئيسية للتلخيص التلقائي لعدة عقود. على الرغم من كل التقدم المحرز، ما زالت الملخصات الاستخراجية تعاني من أوجه القصور بما في ذلك مشاكل Aquerence الناشئة عن استخراج الجمل بعيدا عن سياقها الأصلي في المستند المصدر. هذا يؤثر على تماسك وكمية ملخصات الاستخراجية. في هذا العمل، نقترح خطوة خفيفة الوزن لتحرير الوزن للملخصات الاستخراجية التي تقوم بمراكز حول قرار لغز واحد: استئناف عبارات الاسم. نقوم بإجراء دراسات التقييم البشرية التي تظهر أن قضاة الخبراء البشري يفضلون بشكل كبير إنتاج نظامنا المقترح على الملخصات الأصلية. علاوة على ذلك، بناء على دراسة تقييم تلقائي، نقدم دليلا على قدرة نظامنا على توليد القرارات اللغوية التي تؤدي إلى تحسين ملخصات الاستخراجية. نرسم أيضا رؤى حول كيفية استغلال النظام الأوتوماتيكي بعض الإشارات المحلية المتعلقة بأسلوب كتابة نصوص المقال الرئيسية أو النصوص الموجزة لجعل القرارات، بدلا من التفكير حول السياقات بشكل عملي.
Extractive summarization has been the mainstay of automatic summarization for decades. Despite all the progress, extractive summarizers still suffer from shortcomings including coreference issues arising from extracting sentences away from their original context in the source document. This affects the coherence and readability of extractive summaries. In this work, we propose a lightweight post-editing step for extractive summaries that centers around a single linguistic decision: the definiteness of noun phrases. We conduct human evaluation studies that show that human expert judges substantially prefer the output of our proposed system over the original summaries. Moreover, based on an automatic evaluation study, we provide evidence for our system's ability to generate linguistic decisions that lead to improved extractive summaries. We also draw insights about how the automatic system is exploiting some local cues related to the writing style of the main article texts or summary texts to make the decisions, rather than reasoning about the contexts pragmatically.
References used
https://aclanthology.org/
Language technologies, such as machine translation (MT), but also the application of artificial intelligence in general and an abundance of CAT tools and platforms have an increasing influence on the translation market. Human interaction with these t
Automatic summarisation has the potential to aid physicians in streamlining clerical tasks such as note taking. But it is notoriously difficult to evaluate these systems and demonstrate that they are safe to be used in a clinical setting. To circumve
Automatic post-editing (APE) models are usedto correct machine translation (MT) system outputs by learning from human post-editing patterns. We present the system used in our submission to the WMT'21 Automatic Post-Editing (APE) English-German (En-De
Language technology is already largely adopted by most Language Service Providers (LSPs) and integrated into their traditional translation processes. In this context, there are many different approaches to applying Post-Editing (PE) of a machine tran
The development of Translation Technologies, like Translation Memory and Machine Translation, has completely changed the translation industry and translator's workflow in the last decades. Nevertheless, TM and MT have been developed separately until