Do you want to publish a course? Click here

The Post-Editing Workflow: Training Challenges for LSPs, Post-Editors and Academia

سير العمل بعد التحرير: التحديات التدريبية ل LSPs، بعد المحررين والأوساط الأكاديمية

390   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Language technology is already largely adopted by most Language Service Providers (LSPs) and integrated into their traditional translation processes. In this context, there are many different approaches to applying Post-Editing (PE) of a machine translated text, involving different workflow processes and steps that can be more or less effective and favorable. In the present paper, we propose a 3-step Post-Editing Workflow (PEW). Drawing from industry insight, this paper aims to provide a basic framework for LSPs and Post-Editors on how to streamline Post-Editing workflows in order to improve quality, achieve higher profitability and better return on investment and standardize and facilitate internal processes in terms of management and linguist effort when it comes to PE services. We argue that a comprehensive PEW consists in three essential tasks: Pre-Editing, Post-Editing and Annotation/Machine Translation (MT) evaluation processes (Guerrero, 2018) supported by three essential roles: Pre-Editor, Post-Editor and Annotator (Gene, 2020). Furthermore, the pre-sent paper demonstrates the training challenges arising from this PEW, supported by empirical research results, as reflected in a digital survey among language industry professionals (Gene, 2020), which was conducted in the context of a Post-Editing Webinar. Its sample comprised 51 representatives of LSPs and 12 representatives of SLVs (Single Language Vendors) representatives.



References used
https://aclanthology.org/
rate research

Read More

Language technologies, such as machine translation (MT), but also the application of artificial intelligence in general and an abundance of CAT tools and platforms have an increasing influence on the translation market. Human interaction with these t echnologies becomes ever more important as they impact translators' workflows, work environments, and job profiles. Moreover, it has implications for translator training. One of the tasks that emerged with language technologies is post-editing (PE) where a human translator corrects raw machine translated output according to given guidelines and quality criteria (O'Brien, 2011: 197-198). Already widely used in several traditional translation settings, its use has come into focus in more creative processes such as literary translation and audiovisual translation (AVT) as well. With the integration of MT systems, the translation process should become more efficient. Both economic and cognitive processes are impacted and with it the necessary competences of all stakeholders involved change. In this paper, we want to describe the different potential job profiles and respective competences needed when post-editing subtitles.
Automatic post-editing (APE) models are usedto correct machine translation (MT) system outputs by learning from human post-editing patterns. We present the system used in our submission to the WMT'21 Automatic Post-Editing (APE) English-German (En-De ) shared task. We leverage the state-of-the-art MT system (Ng et al., 2019) for this task. For further improvements, we adapt the MT model to the task domain by using WikiMatrix (Schwenket al., 2021) followed by fine-tuning with additional APE samples from previous editions of the shared task (WMT-16,17,18) and ensembling the models. Our systems beat the baseline on TER scores on the WMT'21 test set.
Extractive summarization has been the mainstay of automatic summarization for decades. Despite all the progress, extractive summarizers still suffer from shortcomings including coreference issues arising from extracting sentences away from their orig inal context in the source document. This affects the coherence and readability of extractive summaries. In this work, we propose a lightweight post-editing step for extractive summaries that centers around a single linguistic decision: the definiteness of noun phrases. We conduct human evaluation studies that show that human expert judges substantially prefer the output of our proposed system over the original summaries. Moreover, based on an automatic evaluation study, we provide evidence for our system's ability to generate linguistic decisions that lead to improved extractive summaries. We also draw insights about how the automatic system is exploiting some local cues related to the writing style of the main article texts or summary texts to make the decisions, rather than reasoning about the contexts pragmatically.
Automatic summarisation has the potential to aid physicians in streamlining clerical tasks such as note taking. But it is notoriously difficult to evaluate these systems and demonstrate that they are safe to be used in a clinical setting. To circumve nt this issue, we propose a semi-automatic approach whereby physicians post-edit generated notes before submitting them. We conduct a preliminary study on the time saving of automatically generated consultation notes with post-editing. Our evaluators are asked to listen to mock consultations and to post-edit three generated notes. We time this and find that it is faster than writing the note from scratch. We present insights and lessons learnt from this experiment.
The development of Translation Technologies, like Translation Memory and Machine Translation, has completely changed the translation industry and translator's workflow in the last decades. Nevertheless, TM and MT have been developed separately until very recently. This ongoing project will study the external integration of TM and MT, examining if the productivity and post-editing efforts of translators are higher or lower than using only TM. To this end, we will conduct an experiment where Translation students and professional translators will be asked to translate two short texts; then we will check the post-editing efforts (temporal, technical and cognitive efforts) and the quality of the translated texts.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا