Do you want to publish a course? Click here

Integration of Machine Translation and Translation Memory: Post-Editing Efforts

دمج الترجمة الآلية وذاكرة الترجمة: جهود ما بعد التحرير

425   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

The development of Translation Technologies, like Translation Memory and Machine Translation, has completely changed the translation industry and translator's workflow in the last decades. Nevertheless, TM and MT have been developed separately until very recently. This ongoing project will study the external integration of TM and MT, examining if the productivity and post-editing efforts of translators are higher or lower than using only TM. To this end, we will conduct an experiment where Translation students and professional translators will be asked to translate two short texts; then we will check the post-editing efforts (temporal, technical and cognitive efforts) and the quality of the translated texts.



References used
https://aclanthology.org/
rate research

Read More

Automatic post-editing (APE) models are usedto correct machine translation (MT) system outputs by learning from human post-editing patterns. We present the system used in our submission to the WMT'21 Automatic Post-Editing (APE) English-German (En-De ) shared task. We leverage the state-of-the-art MT system (Ng et al., 2019) for this task. For further improvements, we adapt the MT model to the task domain by using WikiMatrix (Schwenket al., 2021) followed by fine-tuning with additional APE samples from previous editions of the shared task (WMT-16,17,18) and ensembling the models. Our systems beat the baseline on TER scores on the WMT'21 test set.
This paper introduces data on translation trainees' perceptions of the MTPE process and implications on training in this field. This study aims to analyse trainees' performance of three MTPE tasks the English-Polish language pair and post-tasks inter views to determine the need to promote machine translation post-editing skills in educating translation students. Since very little information concerning MTPE training is available, this study may be found advantageous.
This paper offers a comparative evaluation of four commercial ASR systems which are evaluated according to the post-editing effort required to reach publishable'' quality and according to the number of errors they produce. For the error annotation ta sk, an original error typology for transcription errors is proposed. This study also seeks to examine whether there is a difference in the performance of these systems between native and non-native English speakers. The experimental results suggest that among the four systems, Trint obtains the best scores. It is also observed that most systems perform noticeably better with native speakers and that all systems are most prone to fluency errors.
Accurate translation requires document-level information, which is ignored by sentence-level machine translation. Recent work has demonstrated that document-level consistency can be improved with automatic post-editing (APE) using only target-languag e (TL) information. We study an extended APE model that additionally integrates source context. A human evaluation of fluency and adequacy in English--Russian translation reveals that the model with access to source context significantly outperforms monolingual APE in terms of adequacy, an effect largely ignored by automatic evaluation metrics. Our results show that TL-only modelling increases fluency without improving adequacy, demonstrating the need for conditioning on source text for automatic post-editing. They also highlight blind spots in automatic methods for targeted evaluation and demonstrate the need for human assessment to evaluate document-level translation quality reliably.
Terminological consistency is an essential requirement for industrial translation. High-quality, hand-crafted terminologies contain entries in their nominal forms. Integrating such a terminology into machine translation is not a trivial task. The MT system must be able to disambiguate homographs on the source side and choose the correct wordform on the target side. In this work, we propose a simple but effective method for homograph disambiguation and a method of wordform selection by introducing multi-choice lexical constraints. We also propose a metric to measure the terminological consistency of the translation. Our results have a significant improvement over the current SOTA in terms of terminological consistency without any loss of the BLEU score. All the code used in this work will be published as open-source.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا