Do you want to publish a course? Click here

Adapting Neural Machine Translation for Automatic Post-Editing

تكييف الترجمة الآلية العصبية للتوتدي بعد التحرير

267   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Automatic post-editing (APE) models are usedto correct machine translation (MT) system outputs by learning from human post-editing patterns. We present the system used in our submission to the WMT'21 Automatic Post-Editing (APE) English-German (En-De) shared task. We leverage the state-of-the-art MT system (Ng et al., 2019) for this task. For further improvements, we adapt the MT model to the task domain by using WikiMatrix (Schwenket al., 2021) followed by fine-tuning with additional APE samples from previous editions of the shared task (WMT-16,17,18) and ensembling the models. Our systems beat the baseline on TER scores on the WMT'21 test set.



References used
https://aclanthology.org/
rate research

Read More

The development of Translation Technologies, like Translation Memory and Machine Translation, has completely changed the translation industry and translator's workflow in the last decades. Nevertheless, TM and MT have been developed separately until very recently. This ongoing project will study the external integration of TM and MT, examining if the productivity and post-editing efforts of translators are higher or lower than using only TM. To this end, we will conduct an experiment where Translation students and professional translators will be asked to translate two short texts; then we will check the post-editing efforts (temporal, technical and cognitive efforts) and the quality of the translated texts.
This paper introduces data on translation trainees' perceptions of the MTPE process and implications on training in this field. This study aims to analyse trainees' performance of three MTPE tasks the English-Polish language pair and post-tasks inter views to determine the need to promote machine translation post-editing skills in educating translation students. Since very little information concerning MTPE training is available, this study may be found advantageous.
Accurate translation requires document-level information, which is ignored by sentence-level machine translation. Recent work has demonstrated that document-level consistency can be improved with automatic post-editing (APE) using only target-languag e (TL) information. We study an extended APE model that additionally integrates source context. A human evaluation of fluency and adequacy in English--Russian translation reveals that the model with access to source context significantly outperforms monolingual APE in terms of adequacy, an effect largely ignored by automatic evaluation metrics. Our results show that TL-only modelling increases fluency without improving adequacy, demonstrating the need for conditioning on source text for automatic post-editing. They also highlight blind spots in automatic methods for targeted evaluation and demonstrate the need for human assessment to evaluate document-level translation quality reliably.
The neural machine translation approach has gained popularity in machine translation because of its context analysing ability and its handling of long-term dependency issues. We have participated in the WMT21 shared task of similar language translati on on a Tamil-Telugu pair with the team name: CNLP-NITS. In this task, we utilized monolingual data via pre-train word embeddings in transformer model based neural machine translation to tackle the limitation of parallel corpus. Our model has achieved a bilingual evaluation understudy (BLEU) score of 4.05, rank-based intuitive bilingual evaluation score (RIBES) score of 24.80 and translation edit rate (TER) score of 97.24 for both Tamil-to-Telugu and Telugu-to-Tamil translations respectively.
Many NLP models operate over sequences of subword tokens produced by hand-crafted tokenization rules and heuristic subword induction algorithms. A simple universal alternative is to represent every computerized text as a sequence of bytes via UTF-8, obviating the need for an embedding layer since there are fewer token types (256) than dimensions. Surprisingly, replacing the ubiquitous embedding layer with one-hot representations of each byte does not hurt performance; experiments on byte-to-byte machine translation from English to 10 different languages show a consistent improvement in BLEU, rivaling character-level and even standard subword-level models. A deeper investigation reveals that the combination of embeddingless models with decoder-input dropout amounts to token dropout, which benefits byte-to-byte models in particular.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا