تكنولوجيات اللغة، مثل الترجمة الآلية (MT)، ولكن أيضا تطبيق الذكاء الاصطناعي بشكل عام ووفرة من أدوات القطط والمنصات لها تأثير متزايد على سوق الترجمة. تصبح التفاعل البشري مع هذه التقنيات أكثر أهمية على الإطلاق لأنها تؤثر على سير عمل المترجمين وبيئات العمل وملامح الوظائف. علاوة على ذلك، له آثار على تدريب المترجم. تتمثل إحدى المهام التي ظهرت مع تكنولوجيات اللغة بعد التحرير (PE) حيث يقوم المترجم البشري بتصحيح الناتج المترجم المترجم وفقا للمبادئ التوجيهية المعينة ومعايير الجودة (O'Brien، 2011: 197-198). تستخدم بالفعل على نطاق واسع في العديد من إعدادات الترجمة التقليدية، وقد دخل استخدامها في عمليات أكثر إبداعية مثل الترجمة الأدبية والترجمة السمعية البصرية (AVT) أيضا. مع دمج أنظمة MT، يجب أن تصبح عملية الترجمة أكثر كفاءة. تتأثر كل من العمليات الاقتصادية والمعرفية ومعها، حيث تتغير الكفاءات اللازمة لجميع أصحاب المصلحة. في هذه الورقة، نريد وصف ملفات تعريف الوظائف المحتملة المختلفة والكفاءات المعنية عند ترجمات ما بعد التحرير.
Language technologies, such as machine translation (MT), but also the application of artificial intelligence in general and an abundance of CAT tools and platforms have an increasing influence on the translation market. Human interaction with these technologies becomes ever more important as they impact translators' workflows, work environments, and job profiles. Moreover, it has implications for translator training. One of the tasks that emerged with language technologies is post-editing (PE) where a human translator corrects raw machine translated output according to given guidelines and quality criteria (O'Brien, 2011: 197-198). Already widely used in several traditional translation settings, its use has come into focus in more creative processes such as literary translation and audiovisual translation (AVT) as well. With the integration of MT systems, the translation process should become more efficient. Both economic and cognitive processes are impacted and with it the necessary competences of all stakeholders involved change. In this paper, we want to describe the different potential job profiles and respective competences needed when post-editing subtitles.
References used
https://aclanthology.org/
Automatic post-editing (APE) models are usedto correct machine translation (MT) system outputs by learning from human post-editing patterns. We present the system used in our submission to the WMT'21 Automatic Post-Editing (APE) English-German (En-De
Language technology is already largely adopted by most Language Service Providers (LSPs) and integrated into their traditional translation processes. In this context, there are many different approaches to applying Post-Editing (PE) of a machine tran
Automatic summarisation has the potential to aid physicians in streamlining clerical tasks such as note taking. But it is notoriously difficult to evaluate these systems and demonstrate that they are safe to be used in a clinical setting. To circumve
Extractive summarization has been the mainstay of automatic summarization for decades. Despite all the progress, extractive summarizers still suffer from shortcomings including coreference issues arising from extracting sentences away from their orig
Despite the increasingly good quality of Machine Translation (MT) systems, MT outputs require corrections. Automatic Post-Editing (APE) models have been introduced to perform these corrections without human intervention. However, no system has been a