الملخصات التلقائية لديها القدرة على مساعدة الأطباء في تبسيط المهام الكتابية مثل اتخاذ الملاحظات.ولكن من الصعب بشكل مسهل تقييم هذه الأنظمة وإظهار أنها آمنة لاستخدامها في بيئة سريرية.للتحايل على هذه المسألة، نقترح نهج شبه تلقائي حيث يلاحظ الأطباء بعد تحرير الأطباء قبل تقديمها.نقوم بإجراء دراسة أولية في توفير مذكرات الاستشارات التي تم إنشاؤها تلقائيا مع التحرير بعد التحرير.يطلب من مقيمينا الاستماع إلى استشارات وهمية وإرسال ثلاثة ملاحظات توليد ثلاثة ملاحظات.نحن الوقت في هذا وتجد أنه أسرع من كتابة الملاحظة من الصفر.نقدم نظرة ثاقبة والدروس المستفادة من هذه التجربة.
Automatic summarisation has the potential to aid physicians in streamlining clerical tasks such as note taking. But it is notoriously difficult to evaluate these systems and demonstrate that they are safe to be used in a clinical setting. To circumvent this issue, we propose a semi-automatic approach whereby physicians post-edit generated notes before submitting them. We conduct a preliminary study on the time saving of automatically generated consultation notes with post-editing. Our evaluators are asked to listen to mock consultations and to post-edit three generated notes. We time this and find that it is faster than writing the note from scratch. We present insights and lessons learnt from this experiment.
References used
https://aclanthology.org/
Language technologies, such as machine translation (MT), but also the application of artificial intelligence in general and an abundance of CAT tools and platforms have an increasing influence on the translation market. Human interaction with these t
Automatic post-editing (APE) models are usedto correct machine translation (MT) system outputs by learning from human post-editing patterns. We present the system used in our submission to the WMT'21 Automatic Post-Editing (APE) English-German (En-De
Extractive summarization has been the mainstay of automatic summarization for decades. Despite all the progress, extractive summarizers still suffer from shortcomings including coreference issues arising from extracting sentences away from their orig
Despite the increasingly good quality of Machine Translation (MT) systems, MT outputs require corrections. Automatic Post-Editing (APE) models have been introduced to perform these corrections without human intervention. However, no system has been a
Language technology is already largely adopted by most Language Service Providers (LSPs) and integrated into their traditional translation processes. In this context, there are many different approaches to applying Post-Editing (PE) of a machine tran