Do you want to publish a course? Click here

Annotating anaphoric phenomena in situated dialogue

التسجيل الظواهر الاستعلامية في الحوار الموجود

222   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

In recent years several corpora have been developed for vision and language tasks. With this paper, we intend to start a discussion on the annotation of referential phenomena in situated dialogue. We argue that there is still significant room for corpora that increase the complexity of both visual and linguistic domains and which capture different varieties of perceptual and conversational contexts. In addition, a rich annotation scheme covering a broad range of referential phenomena and compatible with the textual task of coreference resolution is necessary in order to take the most advantage of these corpora. Consequently, there are several open questions regarding the semantics of reference and annotation, and the extent to which standard textual coreference accounts for the situated dialogue genre. Working with two corpora on situated dialogue, we present our extension to the ARRAU (Uryupina et al., 2020) annotation scheme in order to start this discussion.



References used
https://aclanthology.org/
rate research

Read More

We present a tagset for the annotation of quantification which we currently use to annotate certain quantified statements in fictional works of literature. Literary texts feature a rich variety in expressing quantification, including a broad range of lexemes to express quantifiers and complex sentence structures to express the restrictor and the nuclear scope of a quantification. Our tagset consists of seven tags and covers all types of quantification that occur in natural language, including vague quantification and generic quantification. In the second part of the paper, we introduce our German corpus with annotations of generalising statements, which form a proper subset of quantified statements.
Recent pre-trained abstractive summarization systems have started to achieve credible performance, but a major barrier to their use in practice is their propensity to output summaries that are not faithful to the input and that contain factual errors . While a number of annotated datasets and statistical models for assessing factuality have been explored, there is no clear picture of what errors are most important to target or where current techniques are succeeding and failing. We explore both synthetic and human-labeled data sources for training models to identify factual errors in summarization, and study factuality at the word-, dependency-, and sentence-level. Our observations are threefold. First, exhibited factual errors differ significantly across datasets, and commonly-used training sets of simple synthetic errors do not reflect errors made on abstractive datasets like XSum. Second, human-labeled data with fine-grained annotations provides a more effective training signal than sentence-level annotations or synthetic data. Finally, we show that our best factuality detection model enables training of more factual XSum summarization models by allowing us to identify non-factual tokens in the training data.
Short-answer scoring is the task of assessing the correctness of a short text given as response to a question that can come from a variety of educational scenarios. As only content, not form, is important, the exact wording including the explicitness of an answer should not matter. However, many state-of-the-art scoring models heavily rely on lexical information, be it word embeddings in a neural network or n-grams in an SVM. Thus, the exact wording of an answer might very well make a difference. We therefore quantify to what extent implicit language phenomena occur in short answer datasets and examine the influence they have on automatic scoring performance. We find that the level of implicitness depends on the individual question, and that some phenomena are very frequent. Resolving implicit wording to explicit formulations indeed tends to improve automatic scoring performance.
This paper offered an image about Al-Aktal's life, evolution, tribe, poetry and his rank among his age's poets. It also presented the views of critics, linguists and grammarians on his poetry. Besides, it examined the most prominent linguistic and grammatical phenomena in his poetry. These phenomena took the form of the following: the use of odd words, this was discussed in terms of its definition and types. Examples of his use of odd were presented to illustrate this phenomenon. The other phenomenon is that of departure from accepted norms. Again, the meaning of this phenomenon together with its kinds were explored in the poetry of Al-Aktal. Appropriate instances were offered. The third was the deletion phenomenon whose types, incidents and forms were anaysed from the grammarians' points of view. Lastly, the phenomenon Points of view. Lastly,the phenomenon of using the devices of preceding and reversing words,whose functions were studied in terms of grammarians views supported by proper quotations. The conclusion was an exposition of the most significant findings following this research.
Data-to-text generation systems are trained on large datasets, such as WebNLG, Ro-toWire, E2E or DART. Beyond traditional token-overlap evaluation metrics (BLEU or METEOR), a key concern faced by recent generators is to control the factuality of the generated text with respect to the input data specification. We report on our experience when developing an automatic factuality evaluation system for data-to-text generation that we are testing on WebNLG and E2E data. We aim to prepare gold data annotated manually to identify cases where the text communicates more information than is warranted based on the in-put data (extra) or fails to communicate data that is part of the input (missing). While analyzing reference (data, text) samples, we encountered a range of systematic uncertainties that are related to cases on implicit phenomena in text, and the nature of non-linguistic knowledge we expect to be involved when assessing factuality. We derive from our experience a set of evaluation guidelines to reach high inter-annotator agreement on such cases.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا