الكيانات الطبية الحيوية المسماة معقدة، لذلك تم استخدام مطابقة تقريبية لتحسين تغطية الكيان.ومع ذلك، فإن نهج المطابقة التقريب المعتادة يجلب نتيجة مطابقة واحدة فقط، والتي غالبا ما تكون صاخبة.في هذا العمل، نقترح طريقة لنقل الطبية الحيوية التي يجلب مباريات تقريبية متعددة لجملة معينة للاستفادة من أشكالها لتقدير تشابه الكيان.يستخدم النموذج تجمع لتجاهل المعلومات غير الضرورية من نتائج المطابقة الصاخبة، وتعلم كيان تشابه العبارة مع العديد من المباريات التقريبية.النتائج التجريبية على ثلاثة مجموعات بيانات معطرة من المجال الطبي الطبيعي، BC2GM، مرض NCBI، و BC4Chemd، إظهار الفعالية.يعمل نموذجنا في تحسين المتوسط بنسبة تصل إلى +0.21 نقطة مقارنة مع NER القائم على BIOBERT.
Biomedical Named Entities are complex, so approximate matching has been used to improve entity coverage. However, the usual approximate matching approach fetches only one matching result, which is often noisy. In this work, we propose a method for biomedical NER that fetches multiple approximate matches for a given phrase to leverage their variations to estimate entity-likeness. The model uses pooling to discard the unnecessary information from the noisy matching results, and learn the entity-likeness of the phrase with multiple approximate matches. Experimental results on three benchmark datasets from the biomedical domain, BC2GM, NCBI-disease, and BC4CHEMD, demonstrate the effectiveness. Our model improves the average by up to +0.21 points compared to a BioBERT-based NER.
References used
https://aclanthology.org/
There is an increasing interest in continuous learning (CL), as data privacy is becoming a priority for real-world machine learning applications. Meanwhile, there is still a lack of academic NLP benchmarks that are applicable for realistic CL setting
Recent studies in deep learning have shown significant progress in named entity recognition (NER). However, most existing works assume clean data annotation, while real-world scenarios typically involve a large amount of noises from a variety of sour
Training NLP systems typically assumes access to annotated data that has a single human label per example. Given imperfect labeling from annotators and inherent ambiguity of language, we hypothesize that single label is not sufficient to learn the sp
Previous work on Entity Linking has focused on resources targeting non-nested proper named entity mentions, often in data from Wikipedia, i.e. Wikification. In this paper, we present and evaluate WikiGUM, a fully wikified dataset, covering all mentio
Joint entity and relation extraction is challenging due to the complex interaction of interaction between named entity recognition and relation extraction. Although most existing works tend to jointly train these two tasks through a shared network, t