Do you want to publish a course? Click here

WikiGUM: Exhaustive Entity Linking for Wikification in 12 Genres

Wikigum: كيان شامل يربط ل Wikification في 12 نوعا

553   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Previous work on Entity Linking has focused on resources targeting non-nested proper named entity mentions, often in data from Wikipedia, i.e. Wikification. In this paper, we present and evaluate WikiGUM, a fully wikified dataset, covering all mentions of named entities, including their non-named and pronominal mentions, as well as mentions nested within other mentions. The dataset covers a broad range of 12 written and spoken genres, most of which have not been included in Entity Linking efforts to date, leading to poor performance by a pretrained SOTA system in our evaluation. The availability of a variety of other annotations for the same data also enables further research on entities in context.



References used
https://aclanthology.org/
rate research

Read More

Entity Linking (EL) systems have achieved impressive results on standard benchmarks mainly thanks to the contextualized representations provided by recent pretrained language models. However, such systems still require massive amounts of data -- mill ions of labeled examples -- to perform at their best, with training times that often exceed several days, especially when limited computational resources are available. In this paper, we look at how Named Entity Recognition (NER) can be exploited to narrow the gap between EL systems trained on high and low amounts of labeled data. More specifically, we show how and to what extent an EL system can benefit from NER to enhance its entity representations, improve candidate selection, select more effective negative samples and enforce hard and soft constraints on its output entities. We release our software -- code and model checkpoints -- at https://github.com/Babelscape/ner4el.
Biomedical Named Entities are complex, so approximate matching has been used to improve entity coverage. However, the usual approximate matching approach fetches only one matching result, which is often noisy. In this work, we propose a method for bi omedical NER that fetches multiple approximate matches for a given phrase to leverage their variations to estimate entity-likeness. The model uses pooling to discard the unnecessary information from the noisy matching results, and learn the entity-likeness of the phrase with multiple approximate matches. Experimental results on three benchmark datasets from the biomedical domain, BC2GM, NCBI-disease, and BC4CHEMD, demonstrate the effectiveness. Our model improves the average by up to +0.21 points compared to a BioBERT-based NER.
Disagreement between coders is ubiquitous in virtually all datasets annotated with human judgements in both natural language processing and computer vision. However, most supervised machine learning methods assume that a single preferred interpretati on exists for each item, which is at best an idealization. The aim of the SemEval-2021 shared task on learning with disagreements (Le-Wi-Di) was to provide a unified testing framework for methods for learning from data containing multiple and possibly contradictory annotations covering the best-known datasets containing information about disagreements for interpreting language and classifying images. In this paper we describe the shared task and its results.
Due to large number of entities in biomedical knowledge bases, only a small fraction of entities have corresponding labelled training data. This necessitates entity linking models which are able to link mentions of unseen entities using learned repre sentations of entities. Previous approaches link each mention independently, ignoring the relationships within and across documents between the entity mentions. These relations can be very useful for linking mentions in biomedical text where linking decisions are often difficult due mentions having a generic or a highly specialized form. In this paper, we introduce a model in which linking decisions can be made not merely by linking to a knowledge base entity but also by grouping multiple mentions together via clustering and jointly making linking predictions. In experiments on the largest publicly available biomedical dataset, we improve the best independent prediction for entity linking by 3.0 points of accuracy, and our clustering-based inference model further improves entity linking by 2.3 points.
Entity linking is an important problem with many applications. Most previous solutions were designed for settings where annotated training data is available, which is, however, not the case in numerous domains. We propose a light-weight and scalable entity linking method, Eigenthemes, that relies solely on the availability of entity names and a referent knowledge base. Eigenthemes exploits the fact that the entities that are truly mentioned in a document (the gold entities'') tend to form a semantically dense subset of the set of all candidate entities in the document. Geometrically speaking, when representing entities as vectors via some given embedding, the gold entities tend to lie in a low-rank subspace of the full embedding space. Eigenthemes identifies this subspace using the singular value decomposition and scores candidate entities according to their proximity to the subspace. On the empirical front, we introduce multiple strong baselines that compare favorably to (and sometimes even outperform) the existing state of the art. Extensive experiments on benchmark datasets from a variety of real-world domains showcase the effectiveness of our approach.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا