Do you want to publish a course? Click here

Towards Realistic Single-Task Continuous Learning Research for NER

نحو دراسة التعلم المستمرة واقعية واقعية ل NER

297   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

There is an increasing interest in continuous learning (CL), as data privacy is becoming a priority for real-world machine learning applications. Meanwhile, there is still a lack of academic NLP benchmarks that are applicable for realistic CL settings, which is a major challenge for the advancement of the field. In this paper we discuss some of the unrealistic data characteristics of public datasets, study the challenges of realistic single-task continuous learning as well as the effectiveness of data rehearsal as a way to mitigate accuracy loss. We construct a CL NER dataset from an existing publicly available dataset and release it along with the code to the research community.



References used
https://aclanthology.org/
rate research

Read More

Counterfactuals are a valuable means for understanding decisions made by ML systems. However, the counterfactuals generated by the methods currently available for natural language text are either unrealistic or introduce imperceptible changes. We pro pose CounterfactualGAN: a method that combines a conditional GAN and the embeddings of a pretrained BERT encoder to model-agnostically generate realistic natural language text counterfactuals for explaining regression and classification tasks. Experimental results show that our method produces perceptibly distinguishable counterfactuals, while outperforming four baseline methods on fidelity and human judgments of naturalness, across multiple datasets and multiple predictive models.
Biomedical Named Entities are complex, so approximate matching has been used to improve entity coverage. However, the usual approximate matching approach fetches only one matching result, which is often noisy. In this work, we propose a method for bi omedical NER that fetches multiple approximate matches for a given phrase to leverage their variations to estimate entity-likeness. The model uses pooling to discard the unnecessary information from the noisy matching results, and learn the entity-likeness of the phrase with multiple approximate matches. Experimental results on three benchmark datasets from the biomedical domain, BC2GM, NCBI-disease, and BC4CHEMD, demonstrate the effectiveness. Our model improves the average by up to +0.21 points compared to a BioBERT-based NER.
When a model attribution technique highlights a particular part of the input, a user might understand this highlight as making a statement about counterfactuals (Miller, 2019): if that part of the input were to change, the model's prediction might ch ange as well. This paper investigates how well different attribution techniques align with this assumption on realistic counterfactuals in the case of reading comprehension (RC). RC is a particularly challenging test case, as token-level attributions that have been extensively studied in other NLP tasks such as sentiment analysis are less suitable to represent the reasoning that RC models perform. We construct counterfactual sets for three different RC settings, and through heuristics that can connect attribution methods' outputs to high-level model behavior, we can evaluate how useful different attribution methods and even different formats are for understanding counterfactuals. We find that pairwise attributions are better suited to RC than token-level attributions across these different RC settings, with our best performance coming from a modification that we propose to an existing pairwise attribution method.
Blast load caused emptying a large amount of energy very quickly parts of the second causing a significant increase of pressure, in addition to generating high temperatures because of the high speed often ends local effects of the explosion before the bridge begins to respond, which causing major damage in the bridge. Most of bridge design codes didn’t take in account during design the blast load, as well there are no codes inspection on bridges the blast load. The research aims to study and to facilitate the understanding of damages caused by explosion load on elements of road bridges through the facts of explosion and photographs the cases of damages occurring practical and realistic, and also through some computer models.It has been in the research review the impact of the blast load on the slab bridges. The distinction between the case of the impact of the blast load at top and bottom of slab bridge. So the case of the bombing at the top slab bridge leading to increase the binding moments and shear forces, in against the case of blasting at the bottom of slab bridges leads to act opposite load for design loads. Also studied blast load on bridge beams and illustrated resulting addional cross sections. Also explained the effect of blast load on bridge piers and abutments, and the forms of caused damages.
In recent years, few-shot models have been applied successfully to a variety of NLP tasks. Han et al. (2018) introduced a few-shot learning framework for relation classification, and since then, several models have surpassed human performance on this task, leading to the impression that few-shot relation classification is solved. In this paper we take a deeper look at the efficacy of strong few-shot classification models in the more common relation extraction setting, and show that typical few-shot evaluation metrics obscure a wide variability in performance across relations. In particular, we find that state of the art few-shot relation classification models overly rely on entity type information, and propose modifications to the training routine to encourage models to better discriminate between relations involving similar entity types.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا