Do you want to publish a course? Click here

Training NLP systems typically assumes access to annotated data that has a single human label per example. Given imperfect labeling from annotators and inherent ambiguity of language, we hypothesize that single label is not sufficient to learn the sp ectrum of language interpretation. We explore new annotation distribution schemes, assigning multiple labels per example for a small subset of training examples. Introducing such multi label examples at the cost of annotating fewer examples brings clear gains on natural language inference task and entity typing task, even when we simply first train with a single label data and then fine tune with multi label examples. Extending a MixUp data augmentation framework, we propose a learning algorithm that can learn from training examples with different amount of annotation (with zero, one, or multiple labels). This algorithm efficiently combines signals from uneven training data and brings additional gains in low annotation budget and cross domain settings. Together, our method achieves consistent gains in two tasks, suggesting distributing labels unevenly among training examples can be beneficial for many NLP tasks.
A common practice in building NLP datasets, especially using crowd-sourced annotations, involves obtaining multiple annotator judgements on the same data instances, which are then flattened to produce a single ground truth'' label or score, through m ajority voting, averaging, or adjudication. While these approaches may be appropriate in certain annotation tasks, such aggregations overlook the socially constructed nature of human perceptions that annotations for relatively more subjective tasks are meant to capture. In particular, systematic disagreements between annotators owing to their socio-cultural backgrounds and/or lived experiences are often obfuscated through such aggregations. In this paper, we empirically demonstrate that label aggregation may introduce representational biases of individual and group perspectives. Based on this finding, we propose a set of recommendations for increased utility and transparency of datasets for downstream use cases.
We present new state-of-the-art benchmarks for paraphrase detection on all six languages in the Opusparcus sentential paraphrase corpus: English, Finnish, French, German, Russian, and Swedish. We reach these baselines by fine-tuning BERT. The best re sults are achieved on smaller and cleaner subsets of the training sets than was observed in previous research. Additionally, we study a translation-based approach that is competitive for the languages with more limited and noisier training data.
Recent information extraction approaches have relied on training deep neural models. However, such models can easily overfit noisy labels and suffer from performance degradation. While it is very costly to filter noisy labels in large learning resour ces, recent studies show that such labels take more training steps to be memorized and are more frequently forgotten than clean labels, therefore are identifiable in training. Motivated by such properties, we propose a simple co-regularization framework for entity-centric information extraction, which consists of several neural models with identical structures but different parameter initialization. These models are jointly optimized with the task-specific losses and are regularized to generate similar predictions based on an agreement loss, which prevents overfitting on noisy labels. Extensive experiments on two widely used but noisy benchmarks for information extraction, TACRED and CoNLL03, demonstrate the effectiveness of our framework. We release our code to the community for future research.
Automatic detection of the Myers-Briggs Type Indicator (MBTI) from short posts attracted noticeable attention in the last few years. Recent studies showed that this is quite a difficult task, especially on commonly used Twitter data. Obtaining MBTI l abels is also difficult, as human annotation requires trained psychologists, and automatic way of obtaining them is through long questionnaires of questionable usability for the task. In this paper, we present a method for collecting reliable MBTI labels via only four carefully selected questions that can be applied to any type of textual data.
Emotion detection from social media posts has attracted noticeable attention from natural language processing (NLP) community in recent years. The ways for obtaining gold labels for training and testing of the systems for automatic emotion detection differ significantly from one study to another, and pose the question of reliability of gold labels and obtained classification results. This study systematically explores several ways for obtaining gold labels for Ekman's emotion model on Twitter data and the influence of the chosen strategy on the manual classification results.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا