Do you want to publish a course? Click here

Learning with Different Amounts of Annotation: From Zero to Many Labels

التعلم مع كميات مختلفة من التوضيحية: من الصفر إلى العديد من الملصقات

299   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Training NLP systems typically assumes access to annotated data that has a single human label per example. Given imperfect labeling from annotators and inherent ambiguity of language, we hypothesize that single label is not sufficient to learn the spectrum of language interpretation. We explore new annotation distribution schemes, assigning multiple labels per example for a small subset of training examples. Introducing such multi label examples at the cost of annotating fewer examples brings clear gains on natural language inference task and entity typing task, even when we simply first train with a single label data and then fine tune with multi label examples. Extending a MixUp data augmentation framework, we propose a learning algorithm that can learn from training examples with different amount of annotation (with zero, one, or multiple labels). This algorithm efficiently combines signals from uneven training data and brings additional gains in low annotation budget and cross domain settings. Together, our method achieves consistent gains in two tasks, suggesting distributing labels unevenly among training examples can be beneficial for many NLP tasks.



References used
https://aclanthology.org/
rate research

Read More

Recent information extraction approaches have relied on training deep neural models. However, such models can easily overfit noisy labels and suffer from performance degradation. While it is very costly to filter noisy labels in large learning resour ces, recent studies show that such labels take more training steps to be memorized and are more frequently forgotten than clean labels, therefore are identifiable in training. Motivated by such properties, we propose a simple co-regularization framework for entity-centric information extraction, which consists of several neural models with identical structures but different parameter initialization. These models are jointly optimized with the task-specific losses and are regularized to generate similar predictions based on an agreement loss, which prevents overfitting on noisy labels. Extensive experiments on two widely used but noisy benchmarks for information extraction, TACRED and CoNLL03, demonstrate the effectiveness of our framework. We release our code to the community for future research.
Biomedical Named Entities are complex, so approximate matching has been used to improve entity coverage. However, the usual approximate matching approach fetches only one matching result, which is often noisy. In this work, we propose a method for bi omedical NER that fetches multiple approximate matches for a given phrase to leverage their variations to estimate entity-likeness. The model uses pooling to discard the unnecessary information from the noisy matching results, and learn the entity-likeness of the phrase with multiple approximate matches. Experimental results on three benchmark datasets from the biomedical domain, BC2GM, NCBI-disease, and BC4CHEMD, demonstrate the effectiveness. Our model improves the average by up to +0.21 points compared to a BioBERT-based NER.
Concept normalization of clinical texts to standard medical classifications and ontologies is a task with high importance for healthcare and medical research. We attempt to solve this problem through automatic SNOMED CT encoding, where SNOMED CT is o ne of the most widely used and comprehensive clinical term ontologies. Applying basic Deep Learning models, however, leads to undesirable results due to the unbalanced nature of the data and the extreme number of classes. We propose a classification procedure that features a multiple-step workflow consisting of label clustering, multi-cluster classification, and clusters-to-labels mapping. For multi-cluster classification, BioBERT is fine-tuned over our custom dataset. The clusters-to-labels mapping is carried out by a one-vs-all classifier (SVC) applied to every single cluster. We also present the steps for automatic dataset generation of textual descriptions annotated with SNOMED CT codes based on public data and linked open data. In order to cope with the problem that our dataset is highly unbalanced, some data augmentation methods are applied. The results from the conducted experiments show high accuracy and reliability of our approach for prediction of SNOMED CT codes relevant to a clinical text.
Probabilistic context-free grammars (PCFGs) with neural parameterization have been shown to be effective in unsupervised phrase-structure grammar induction. However, due to the cubic computational complexity of PCFG representation and parsing, previo us approaches cannot scale up to a relatively large number of (nonterminal and preterminal) symbols. In this work, we present a new parameterization form of PCFGs based on tensor decomposition, which has at most quadratic computational complexity in the symbol number and therefore allows us to use a much larger number of symbols. We further use neural parameterization for the new form to improve unsupervised parsing performance. We evaluate our model across ten languages and empirically demonstrate the effectiveness of using more symbols.
ActiveAnno is an annotation tool focused on document-level annotation tasks developed both for industry and research settings. It is designed to be a general-purpose tool with a wide variety of use cases. It features a modern and responsive web UI fo r creating annotation projects, conducting annotations, adjudicating disagreements, and analyzing annotation results. ActiveAnno embeds a highly configurable and interactive user interface. The tool also integrates a RESTful API that enables integration into other software systems, including an API for machine learning integration. ActiveAnno is built with extensible design and easy deployment in mind, all to enable users to perform annotation tasks with high efficiency and high-quality annotation results.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا