Do you want to publish a course? Click here

Differentiable Subset Pruning of Transformer Heads

تشذيب مجموعة فرعية مختلفة من رؤساء المحولات

59   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Abstract Multi-head attention, a collection of several attention mechanisms that independently attend to different parts of the input, is the key ingredient in the Transformer. Recent work has shown, however, that a large proportion of the heads in a Transformer's multi-head attention mechanism can be safely pruned away without significantly harming the performance of the model; such pruning leads to models that are noticeably smaller and faster in practice. Our work introduces a new head pruning technique that we term differentiable subset pruning. ntuitively, our method learns per- head importance variables and then enforces a user-specified hard constraint on the number of unpruned heads. he importance variables are learned via stochastic gradient descent. e conduct experiments on natural language inference and machine translation; we show that differentiable subset pruning performs comparably or better than previous works while offering precise control of the sparsity level.1

References used
https://aclanthology.org/
rate research

Read More

Domain Adaptation is widely used in practical applications of neural machine translation, which aims to achieve good performance on both general domain and in-domain data. However, the existing methods for domain adaptation usually suffer from catast rophic forgetting, large domain divergence, and model explosion. To address these three problems, we propose a method of divide and conquer'' which is based on the importance of neurons or parameters for the translation model. In this method, we first prune the model and only keep the important neurons or parameters, making them responsible for both general-domain and in-domain translation. Then we further train the pruned model supervised by the original whole model with knowledge distillation. Last we expand the model to the original size and fine-tune the added parameters for the in-domain translation. We conducted experiments on different language pairs and domains and the results show that our method can achieve significant improvements compared with several strong baselines.
We participated in all tracks of the WMT 2021 efficient machine translation task: single-core CPU, multi-core CPU, and GPU hardware with throughput and latency conditions. Our submissions combine several efficiency strategies: knowledge distillation, a simpler simple recurrent unit (SSRU) decoder with one or two layers, lexical shortlists, smaller numerical formats, and pruning. For the CPU track, we used quantized 8-bit models. For the GPU track, we experimented with FP16 and 8-bit integers in tensorcores. Some of our submissions optimize for size via 4-bit log quantization and omitting a lexical shortlist. We have extended pruning to more parts of the network, emphasizing component- and block-level pruning that actually improves speed unlike coefficient-wise pruning.
In the field of natural language processing, ensembles are broadly known to be effective in improving performance. This paper analyzes how ensemble of neural machine translation (NMT) models affect performance improvement by designing various experim ental setups (i.e., intra-, inter-ensemble, and non-convergence ensemble). To an in-depth examination, we analyze each ensemble method with respect to several aspects such as different attention models and vocab strategies. Experimental results show that ensembling is not always resulting in performance increases and give noteworthy negative findings.
This paper describes the system used by the AIMH Team to approach the SemEval Task 6. We propose an approach that relies on an architecture based on the transformer model to process multimodal content (text and images) in memes. Our architecture, cal led DVTT (Double Visual Textual Transformer), approaches Subtasks 1 and 3 of Task 6 as multi-label classification problems, where the text and/or images of the meme are processed, and the probabilities of the presence of each possible persuasion technique are returned as a result. DVTT uses two complete networks of transformers that work on text and images that are mutually conditioned. One of the two modalities acts as the main one and the second one intervenes to enrich the first one, thus obtaining two distinct ways of operation. The two transformers outputs are merged by averaging the inferred probabilities for each possible label, and the overall network is trained end-to-end with a binary cross-entropy loss.
The Purpose of this study was to examine the Job Performance of the faculty staff at the Jordanian public universities. The sample of the study (n. 77) was randomly selected. A questionnaire of the Job Performance was developed by the researcher a s a measurement instrument. The results of the study indicated that the degree of the Job Performance among the participants was high (3.78). In light of the results, it was recommended that public universities should identify their faculty staff needs and work harder to meet these needs. Public universities should also have an open organizational climate to motivate the faculty staff. Additionally, it was recommended that material, as well as immaterial, incentives be awarded by their institutions as such incentives positively impact the Job Performance.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا