في مجال معالجة اللغة الطبيعية، من المعروف أن الكفارات فعالة في تحسين الأداء.تحلل هذه الورقة كيف تؤثر فرقة نماذج الترجمة الآلية العصبية (NMT) على تحسين الأداء من خلال تصميم مختلف الإعدادات التجريبية (I.E.، Intra-، Inter-Ertern-Erbergble، وغير غير التقاعد).لفحص متعمق، نقوم بتحليل كل طريقة فرقة فيما يتعلق بالعديد من جوانب مثل نماذج الاهتمام المختلفة واستراتيجيات VOCAB.تظهر النتائج التجريبية أن الكوغرات لا يؤدي دائما إلى زيادة الأداء وتقديم النتائج السلبية الجديرة بالملاحظة.
In the field of natural language processing, ensembles are broadly known to be effective in improving performance. This paper analyzes how ensemble of neural machine translation (NMT) models affect performance improvement by designing various experimental setups (i.e., intra-, inter-ensemble, and non-convergence ensemble). To an in-depth examination, we analyze each ensemble method with respect to several aspects such as different attention models and vocab strategies. Experimental results show that ensembling is not always resulting in performance increases and give noteworthy negative findings.
References used
https://aclanthology.org/
This work introduces a simple regressive ensemble for evaluating machine translation quality based on a set of novel and established metrics. We evaluate the ensemble using a correlation to expert-based MQM scores of the WMT 2021 Metrics workshop. In
In this work, we study hallucinations in Neural Machine Translation (NMT), which lie at an extreme end on the spectrum of NMT pathologies. Firstly, we connect the phenomenon of hallucinations under source perturbation to the Long-Tail theory of Feldm
We study the problem of domain adaptation in Neural Machine Translation (NMT) when domain-specific data cannot be shared due to confidentiality or copyright issues. As a first step, we propose to fragment data into phrase pairs and use a random sampl
The MultiTraiNMT Erasmus+ project aims at developing an open innovative syllabus in neural machine translation (NMT) for language learners and translators as multilingual citizens. Machine translation is seen as a resource that can support citizens i
Production NMT systems typically need to serve niche domains that are not covered by adequately large and readily available parallel corpora. As a result, practitioners often fine-tune general purpose models to each of the domains their organisation