تم اعتماد اهتمام الذات مؤخرا لمجموعة واسعة من مشاكل النمذجة التسلسلية. على الرغم من فعاليته، فإن اهتمام الذات يعاني من حساب التربيعي ومتطلبات الذاكرة فيما يتعلق بطول التسلسل. تركز النهج الناجحة للحد من هذا التعقيد على حضور النوافذ المنزلق المحلية أو مجموعة صغيرة من المواقع مستقلة عن المحتوى. يقترح عملنا تعلم أنماط الانتباه ديناميكية متناثرة تتجنب تخصيص الحساب والذاكرة لحضور المحتوى غير المرتبط باستعلام الفائدة. يبني هذا العمل على سطرين من الأبحاث: فهو يجمع بين مرونة النمذجة للعمل المسبق على اهتمام متمرد للمحتوى مع مكاسب الكفاءة من الأساليب القائمة على الاهتمام المحلي والزموني المتناثر. نموذجنا، محول التوجيه، ينفذ عن النفس مع وحدة توجيه متناثرة تعتمد على الوسائل K عبر الإنترنت مع تقليل التعقيد العام للانتباه إلى O (N1.5D) من O (N2D) لطول التسلسل N وبعد المخفي D. نظرا لأن نموذجنا يتفوق على نماذج انتباه متناثرة قابلة للمقارنة على نمذجة اللغة على Wikitext-103 (15.8 مقابل 18.3 حيرة)، وكذلك على جيل الصورة على Imagenet-64 (3.43 مقابل 3.44 بت / خافت) أثناء استخدام طبقات أقل من الاهتمام الذاتي. بالإضافة إلى ذلك، وضعنا مجموعة جديدة من مجموعة جديدة من مجموعة بيانات PG-19 التي تم إصدارها حديثا، والحصول على اختبار حيرة من 33.2 مع نموذج محول توجيه 22 طبقة مدرب على تسلسل الطول 8192. نحن نفتح المصدر لتحويل التوجيه في Tensorflow.1
Self-attention has recently been adopted for a wide range of sequence modeling problems. Despite its effectiveness, self-attention suffers from quadratic computation and memory requirements with respect to sequence length. Successful approaches to reduce this complexity focused on attending to local sliding windows or a small set of locations independent of content. Our work proposes to learn dynamic sparse attention patterns that avoid allocating computation and memory to attend to content unrelated to the query of interest. This work builds upon two lines of research: It combines the modeling flexibility of prior work on content-based sparse attention with the efficiency gains from approaches based on local, temporal sparse attention. Our model, the Routing Transformer, endows self-attention with a sparse routing module based on online k-means while reducing the overall complexity of attention to O(n1.5d) from O(n2d) for sequence length n and hidden dimension d. We show that our model outperforms comparable sparse attention models on language modeling on Wikitext-103 (15.8 vs 18.3 perplexity), as well as on image generation on ImageNet-64 (3.43 vs 3.44 bits/dim) while using fewer self-attention layers. Additionally, we set a new state-of-the-art on the newly released PG-19 data-set, obtaining a test perplexity of 33.2 with a 22 layer Routing Transformer model trained on sequences of length 8192. We open-source the code for Routing Transformer in Tensorflow.1
References used
https://aclanthology.org/
Passage retrieval and ranking is a key task in open-domain question answering and information retrieval. Current effective approaches mostly rely on pre-trained deep language model-based retrievers and rankers. These methods have been shown to effect
Fully understanding narratives often requires identifying events in the context of whole documents and modeling the event relations. However, document-level event extraction is a challenging task as it requires the extraction of event and entity core
Current benchmark tasks for natural language processing contain text that is qualitatively different from the text used in informal day to day digital communication. This discrepancy has led to severe performance degradation of state-of-the-art NLP m
Despite the recent successes of transformer-based models in terms of effectiveness on a variety of tasks, their decisions often remain opaque to humans. Explanations are particularly important for tasks like offensive language or toxicity detection o
هدفنا من خلال هذه الدراسة في إطار المشروع الفصلي للسنة الرابعة إلى إلقاء الضوء على استرجاع الصور من مجموعة كبيرة بالاعتماد على محتوى صورة هدف , و قمنا بتدعيم هذه الدراسة بتطبيق ضمن بيئة الماتلاب لبرنامج بحث عن الصور المشابهة لصورة مدخلة .
و قد تركز