Do you want to publish a course? Click here

Paraphrase generation is an important task in natural language processing. Previous works focus on sentence-level paraphrase generation, while ignoring document-level paraphrase generation, which is a more challenging and valuable task. In this paper , we explore the task of document-level paraphrase generation for the first time and focus on the inter-sentence diversity by considering sentence rewriting and reordering. We propose CoRPG (Coherence Relationship guided Paraphrase Generation), which leverages graph GRU to encode the coherence relationship graph and get the coherence-aware representation for each sentence, which can be used for re-arranging the multiple (possibly modified) input sentences. We create a pseudo document-level paraphrase dataset for training CoRPG. Automatic evaluation results show CoRPG outperforms several strong baseline models on the BERTScore and diversity scores. Human evaluation also shows our model can generate document paraphrase with more diversity and semantic preservation.
Sentence-level Quality estimation (QE) of machine translation is traditionally formulated as a regression task, and the performance of QE models is typically measured by Pearson correlation with human labels. Recent QE models have achieved previously -unseen levels of correlation with human judgments, but they rely on large multilingual contextualized language models that are computationally expensive and make them infeasible for real-world applications. In this work, we evaluate several model compression techniques for QE and find that, despite their popularity in other NLP tasks, they lead to poor performance in this regression setting. We observe that a full model parameterization is required to achieve SoTA results in a regression task. However, we argue that the level of expressiveness of a model in a continuous range is unnecessary given the downstream applications of QE, and show that reframing QE as a classification problem and evaluating QE models using classification metrics would better reflect their actual performance in real-world applications.
Word embeddings capture semantic meaning of individual words. How to bridge word-level linguistic knowledge with sentence-level language representation is an open problem. This paper examines whether sentence-level representations can be achieved by building a custom sentence database focusing on one aspect of a sentence's meaning. Our three separate semantic aspects are whether the sentence: (1) communicates a causal relationship, (2) indicates that two things are correlated with each other, and (3) expresses information or knowledge. The three classifiers provide epistemic information about a sentence's content.
Current language models are usually trained using a self-supervised scheme, where the main focus is learning representations at the word or sentence level. However, there has been limited progress in generating useful discourse-level representations. In this work, we propose to use ideas from predictive coding theory to augment BERT-style language models with a mechanism that allows them to learn suitable discourse-level representations. As a result, our proposed approach is able to predict future sentences using explicit top-down connections that operate at the intermediate layers of the network. By experimenting with benchmarks designed to evaluate discourse-related knowledge using pre-trained sentence representations, we demonstrate that our approach improves performance in 6 out of 11 tasks by excelling in discourse relationship detection.
Abstractive summarization models heavily rely on copy mechanisms, such as the pointer network or attention, to achieve good performance, measured by textual overlap with reference summaries. As a result, the generated summaries stay close to the form ulations in the source document. We propose the *sentence planner* model to generate more abstractive summaries. It includes a hierarchical decoder that first generates a representation for the next summary sentence, and then conditions the word generator on this representation. Our generated summaries are more abstractive and at the same time achieve high ROUGE scores when compared to human reference summaries. We verify the effectiveness of our design decisions with extensive evaluations.
Sentence-level extractive text summarization aims to select important sentences from a given document. However, it is very challenging to model the importance of sentences. In this paper, we propose a novel Frame Semantic-Enhanced Sentence Modeling f or Extractive Summarization, which leverages Frame semantics to model sentences from both intra-sentence level and inter-sentence level, facilitating the text summarization task. In particular, intra-sentence level semantics leverage Frames and Frame Elements to model internal semantic structure within a sentence, while inter-sentence level semantics leverage Frame-to-Frame relations to model relationships among sentences. Extensive experiments on two benchmark corpus CNN/DM and NYT demonstrate that our model outperforms six state-of-the-art methods significantly.
The task of document-level text simplification is very similar to summarization with the additional difficulty of reducing complexity. We introduce a newly collected data set of German texts, collected from the Swiss news magazine 20 Minuten (20 Minu tes') that consists of full articles paired with simplified summaries. Furthermore, we present experiments on automatic text simplification with the pretrained multilingual mBART and a modified version thereof that is more memory-friendly, using both our new data set and existing simplification corpora. Our modifications of mBART let us train at a lower memory cost without much loss in performance, in fact, the smaller mBART even improves over the standard model in a setting with multiple simplification levels.
Framing a news article means to portray the reported event from a specific perspective, e.g., from an economic or a health perspective. Reframing means to change this perspective. Depending on the audience or the submessage, reframing can become nece ssary to achieve the desired effect on the readers. Reframing is related to adapting style and sentiment, which can be tackled with neural text generation techniques. However, it is more challenging since changing a frame requires rewriting entire sentences rather than single phrases. In this paper, we study how to computationally reframe sentences in news articles while maintaining their coherence to the context. We treat reframing as a sentence-level fill-in-the-blank task for which we train neural models on an existing media frame corpus. To guide the training, we propose three strategies: framed-language pretraining, named-entity preservation, and adversarial learning. We evaluate respective models automatically and manually for topic consistency, coherence, and successful reframing. Our results indicate that generating properly-framed text works well but with tradeoffs.
Text simplification is a valuable technique. However, current research is limited to sentence simplification. In this paper, we define and investigate a new task of document-level text simplification, which aims to simplify a document consisting of m ultiple sentences. Based on Wikipedia dumps, we first construct a large-scale dataset named D-Wikipedia and perform analysis and human evaluation on it to show that the dataset is reliable. Then, we propose a new automatic evaluation metric called D-SARI that is more suitable for the document-level simplification task. Finally, we select several representative models as baseline models for this task and perform automatic evaluation and human evaluation. We analyze the results and point out the shortcomings of the baseline models.
In Automated Claim Verification, we retrieve evidence from a knowledge base to determine the veracity of a claim. Intuitively, the retrieval of the correct evidence plays a crucial role in this process. Often, evidence selection is tackled as a pairw ise sentence classification task, i.e., we train a model to predict for each sentence individually whether it is evidence for a claim. In this work, we fine-tune document level transformers to extract all evidence from a Wikipedia document at once. We show that this approach performs better than a comparable model classifying sentences individually on all relevant evidence selection metrics in FEVER. Our complete pipeline building on this evidence selection procedure produces a new state-of-the-art result on FEVER, a popular claim verification benchmark.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا