تهدف تلخيص النص الاستخراجي على مستوى الجملة إلى تحديد جمل مهمة من وثيقة معينة.ومع ذلك، فإن الأمر صعب للغاية لنموذج أهمية الجمل.في هذه الورقة، نقترح نمذجة جملة محسنة من الإطار الدلالي على الرواية لتلخيص الاستخراج، والتي ترفع دلالات الإطار لنموذج الجمل من كل من مستوى الجملة داخل الجملة ومستوى الجملة بين الجملة، مما يسهل مهمة تلخيص النص.على وجه الخصوص، ترفع دلالات المستوى داخل الجملة عناصر الإطارات وإطار العناصر لنموذج الهيكل الدلالي الداخلي في غضون جملة، في حين أن دلالات مستوى المستوى بين الجملة تستفيد العلاقات بالإطار إلى الإطارات إلى العلاقات النموذجية بين الجمل.تثبت تجارب واسعة على اثنين من Corpus Corpus CNN / DM و NYT أن نموذجنا يتفوق على ستة أساليب حديثة بشكل كبير.
Sentence-level extractive text summarization aims to select important sentences from a given document. However, it is very challenging to model the importance of sentences. In this paper, we propose a novel Frame Semantic-Enhanced Sentence Modeling for Extractive Summarization, which leverages Frame semantics to model sentences from both intra-sentence level and inter-sentence level, facilitating the text summarization task. In particular, intra-sentence level semantics leverage Frames and Frame Elements to model internal semantic structure within a sentence, while inter-sentence level semantics leverage Frame-to-Frame relations to model relationships among sentences. Extensive experiments on two benchmark corpus CNN/DM and NYT demonstrate that our model outperforms six state-of-the-art methods significantly.
References used
https://aclanthology.org/
This paper introduces Semantic Frame Forecast, a task that predicts the semantic frames that will occur in the next 10, 100, or even 1,000 sentences in a running story. Prior work focused on predicting the immediate future of a story, such as one to
Recently graph-based methods have been adopted for Abstractive Text Summarization. However, existing graph-based methods only consider either word relations or structure information, which neglect the correlation between them. To simultaneously captu
In this paper, we study the abstractive sentence summarization. There are two essential information features that can influence the quality of news summarization, which are topic keywords and the knowledge structure of the news text. Besides, the exi
Frame semantic parsing is a semantic analysis task based on FrameNet which has received great attention recently. The task usually involves three subtasks sequentially: (1) target identification, (2) frame classification and (3) semantic role labelin
Abstractive summarization models heavily rely on copy mechanisms, such as the pointer network or attention, to achieve good performance, measured by textual overlap with reference summaries. As a result, the generated summaries stay close to the form