Do you want to publish a course? Click here

Classification-based Quality Estimation: Small and Efficient Models for Real-world Applications

تقدير الجودة القائم على التصنيف: نماذج صغيرة وفعالة لتطبيقات العالم الحقيقي

441   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Sentence-level Quality estimation (QE) of machine translation is traditionally formulated as a regression task, and the performance of QE models is typically measured by Pearson correlation with human labels. Recent QE models have achieved previously-unseen levels of correlation with human judgments, but they rely on large multilingual contextualized language models that are computationally expensive and make them infeasible for real-world applications. In this work, we evaluate several model compression techniques for QE and find that, despite their popularity in other NLP tasks, they lead to poor performance in this regression setting. We observe that a full model parameterization is required to achieve SoTA results in a regression task. However, we argue that the level of expressiveness of a model in a continuous range is unnecessary given the downstream applications of QE, and show that reframing QE as a classification problem and evaluating QE models using classification metrics would better reflect their actual performance in real-world applications.



References used
https://aclanthology.org/
rate research

Read More

Services that demanded by users via internet network are classified in two main kinds, Services work in real time such as video and voice in real time and use UDP protocol, and other services that work in non-real time such as web browsing (HTTP) a nd file transfer (FTP) which use TCP Protocol. In this research, we study and analyze algorithms that enhance the quality of service for various applications. For real time application, we use queues disciplines, which gives high priority for these services and achieves minimum delay. For non-real time application, we study congestion control algorithms, which achieve best performance for reliable transfer process with existing the congestion in the network. We used OPNET 14.5 program for simulating various services via internet network. Simulation results show achieving minimum delay for voice service, and achieving high transmission rate for FTP application with existing of packets loss in the network.
Question answering (QA) systems are now available through numerous commercial applications for a wide variety of domains, serving millions of users that interact with them via speech interfaces. However, current benchmarks in QA research do not accou nt for the errors that speech recognition models might introduce, nor do they consider the language variations (dialects) of the users. To address this gap, we augment an existing QA dataset to construct a multi-dialect, spoken QA benchmark on five languages (Arabic, Bengali, English, Kiswahili, Korean) with more than 68k audio prompts in 24 dialects from 255 speakers. We provide baseline results showcasing the real-world performance of QA systems and analyze the effect of language variety and other sensitive speaker attributes on downstream performance. Last, we study the fairness of the ASR and QA models with respect to the underlying user populations.
Automatic image captioning has improved significantly over the last few years, but the problem is far from being solved, with state of the art models still often producing low quality captions when used in the wild. In this paper, we focus on the tas k of Quality Estimation (QE) for image captions, which attempts to model the caption quality from a human perspective and *without* access to ground-truth references, so that it can be applied at prediction time to detect low-quality captions produced on *previously unseen images*. For this task, we develop a human evaluation process that collects coarse-grained caption annotations from crowdsourced users, which is then used to collect a large scale dataset spanning more than 600k caption quality ratings. We then carefully validate the quality of the collected ratings and establish baseline models for this new QE task. Finally, we further collect fine-grained caption quality annotations from trained raters, and use them to demonstrate that QE models trained over the coarse ratings can effectively detect and filter out low-quality image captions, thereby improving the user experience from captioning systems.
Quality estimation (QE) of machine translation (MT) aims to evaluate the quality of machine-translated sentences without references and is important in practical applications of MT. Training QE models require massive parallel data with hand-crafted q uality annotations, which are time-consuming and labor-intensive to obtain. To address the issue of the absence of annotated training data, previous studies attempt to develop unsupervised QE methods. However, very few of them can be applied to both sentence- and word-level QE tasks, and they may suffer from noises in the synthetic data. To reduce the negative impact of noises, we propose a self-supervised method for both sentence- and word-level QE, which performs quality estimation by recovering the masked target words. Experimental results show that our method outperforms previous unsupervised methods on several QE tasks in different language pairs and domains.
We investigate grounded language learning through real-world data, by modelling a teacher-learner dynamics through the natural interactions occurring between users and search engines; in particular, we explore the emergence of semantic generalization from unsupervised dense representations outside of synthetic environments. A grounding domain, a denotation function and a composition function are learned from user data only. We show how the resulting semantics for noun phrases exhibits compositional properties while being fully learnable without any explicit labelling. We benchmark our grounded semantics on compositionality and zero-shot inference tasks, and we show that it provides better results and better generalizations than SOTA non-grounded models, such as word2vec and BERT.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا