Do you want to publish a course? Click here

Evidence Selection as a Token-Level Prediction Task

اختيار الأدلة باعتبارها مهمة التنبؤ على مستوى الرمز المميز

258   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

In Automated Claim Verification, we retrieve evidence from a knowledge base to determine the veracity of a claim. Intuitively, the retrieval of the correct evidence plays a crucial role in this process. Often, evidence selection is tackled as a pairwise sentence classification task, i.e., we train a model to predict for each sentence individually whether it is evidence for a claim. In this work, we fine-tune document level transformers to extract all evidence from a Wikipedia document at once. We show that this approach performs better than a comparable model classifying sentences individually on all relevant evidence selection metrics in FEVER. Our complete pipeline building on this evidence selection procedure produces a new state-of-the-art result on FEVER, a popular claim verification benchmark.



References used
https://aclanthology.org/
rate research

Read More

Fact Extraction and VERification (FEVER) is a recently introduced task that consists of the following subtasks (i) document retrieval, (ii) sentence retrieval, and (iii) claim verification. In this work, we focus on the subtask of sentence retrieval. Specifically, we propose an evidence-aware transformer-based model that outperforms all other models in terms of FEVER score by using a subset of training instances. In addition, we conduct a large experimental study to get a better understanding of the problem, while we summarize our findings by presenting future research challenges.
Existing pre-trained language models (PLMs) are often computationally expensive in inference, making them impractical in various resource-limited real-world applications. To address this issue, we propose a dynamic token reduction approach to acceler ate PLMs' inference, named TR-BERT, which could flexibly adapt the layer number of each token in inference to avoid redundant calculation. Specially, TR-BERT formulates the token reduction process as a multi-step token selection problem and automatically learns the selection strategy via reinforcement learning. The experimental results on several downstream NLP tasks show that TR-BERT is able to speed up BERT by 2-5 times to satisfy various performance demands. Moreover, TR-BERT can also achieve better performance with less computation in a suite of long-text tasks since its token-level layer number adaption greatly accelerates the self-attention operation in PLMs. The source code and experiment details of this paper can be obtained from https://github.com/thunlp/TR-BERT.
A cascaded Sign Language Translation system first maps sign videos to gloss annotations and then translates glosses into a spoken languages. This work focuses on the second-stage gloss translation component, which is challenging due to the scarcity o f publicly available parallel data. We approach gloss translation as a low-resource machine translation task and investigate two popular methods for improving translation quality: hyperparameter search and backtranslation. We discuss the potentials and pitfalls of these methods based on experiments on the RWTH-PHOENIX-Weather 2014T dataset.
The task of Event Detection (ED) in Information Extraction aims to recognize and classify trigger words of events in text. The recent progress has featured advanced transformer-based language models (e.g., BERT) as a critical component in state-of-th e-art models for ED. However, the length limit for input texts is a barrier for such ED models as they cannot encode long-range document-level context that has been shown to be beneficial for ED. To address this issue, we propose a novel method to model document-level context for ED that dynamically selects relevant sentences in the document for the event prediction of the target sentence. The target sentence will be then augmented with the selected sentences and consumed entirely by transformer-based language models for improved representation learning for ED. To this end, the REINFORCE algorithm is employed to train the relevant sentence selection for ED. Several information types are then introduced to form the reward function for the training process, including ED performance, sentence similarity, and discourse relations. Our extensive experiments on multiple benchmark datasets reveal the effectiveness of the proposed model, leading to new state-of-the-art performance.
In this paper, we describe our system used for SemEval 2021 Task 5: Toxic Spans Detection. Our proposed system approaches the problem as a token classification task. We trained our model to find toxic words and concatenate their spans to predict the toxic spans within a sentence. We fine-tuned Pre-trained Language Models (PLMs) for identifying the toxic words. For fine-tuning, we stacked the classification layer on top of the PLM features of each word to classify if it is toxic or not. PLMs are pre-trained using different objectives and their performance may differ on downstream tasks. We, therefore, compare the performance of BERT, ELECTRA, RoBERTa, XLM-RoBERTa, T5, XLNet, and MPNet for identifying toxic spans within a sentence. Our best performing system used RoBERTa. It performed well, achieving an F1 score of 0.6841 and secured a rank of 16 on the official leaderboard.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا