Do you want to publish a course? Click here

Sentence-level Planning for Especially Abstractive Summarization

التخطيط لمستوى الجملة لتلخيص إغراق خاصة

386   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Abstractive summarization models heavily rely on copy mechanisms, such as the pointer network or attention, to achieve good performance, measured by textual overlap with reference summaries. As a result, the generated summaries stay close to the formulations in the source document. We propose the *sentence planner* model to generate more abstractive summaries. It includes a hierarchical decoder that first generates a representation for the next summary sentence, and then conditions the word generator on this representation. Our generated summaries are more abstractive and at the same time achieve high ROUGE scores when compared to human reference summaries. We verify the effectiveness of our design decisions with extensive evaluations.



References used
https://aclanthology.org/
rate research

Read More

Recently graph-based methods have been adopted for Abstractive Text Summarization. However, existing graph-based methods only consider either word relations or structure information, which neglect the correlation between them. To simultaneously captu re the word relations and structure information from sentences, we propose a novel Dual Graph network for Abstractive Sentence Summarization. Specifically, we first construct semantic scenario graph and semantic word relation graph based on FrameNet, and subsequently learn their representations and design graph fusion method to enhance their correlation and obtain better semantic representation for summary generation. Experimental results show our model outperforms existing state-of-the-art methods on two popular benchmark datasets, i.e., Gigaword and DUC 2004.
Abstractive conversation summarization has received growing attention while most current state-of-the-art summarization models heavily rely on human-annotated summaries. To reduce the dependence on labeled summaries, in this work, we present a simple yet effective set of Conversational Data Augmentation (CODA) methods for semi-supervised abstractive conversation summarization, such as random swapping/deletion to perturb the discourse relations inside conversations, dialogue-acts-guided insertion to interrupt the development of conversations, and conditional-generation-based substitution to substitute utterances with their paraphrases generated based on the conversation context. To further utilize unlabeled conversations, we combine CODA with two-stage noisy self-training where we first pre-train the summarization model on unlabeled conversations with pseudo summaries and then fine-tune it on labeled conversations. Experiments conducted on the recent conversation summarization datasets demonstrate the effectiveness of our methods over several state-of-the-art data augmentation baselines.
Abstract We introduce a simple but flexible mechanism to learn an intermediate plan to ground the generation of abstractive summaries. Specifically, we prepend (or prompt) target summaries with entity chains---ordered sequences of entities mentioned in the summary. Transformer-based sequence-to-sequence models are then trained to generate the entity chain and then continue generating the summary conditioned on the entity chain and the input. We experimented with both pretraining and finetuning with this content planning objective. When evaluated on CNN/DailyMail, XSum, SAMSum, and BillSum, we demonstrate empirically that the grounded generation with the planning objective improves entity specificity and planning in summaries for all datasets, and achieves state-of-the-art performance on XSum and SAMSum in terms of rouge. Moreover, we demonstrate empirically that planning with entity chains provides a mechanism to control hallucinations in abstractive summaries. By prompting the decoder with a modified content plan that drops hallucinated entities, we outperform state-of-the-art approaches for faithfulness when evaluated automatically and by humans.
A crucial difference between single- and multi-document summarization is how salient content manifests itself in the document(s). While such content may appear at the beginning of a single document, essential information is frequently reiterated in a set of documents related to a particular topic, resulting in an endorsement effect that increases information salience. In this paper, we model the cross-document endorsement effect and its utilization in multiple document summarization. Our method generates a synopsis from each document, which serves as an endorser to identify salient content from other documents. Strongly endorsed text segments are used to enrich a neural encoder-decoder model to consolidate them into an abstractive summary. The method has a great potential to learn from fewer examples to identify salient content, which alleviates the need for costly retraining when the set of documents is dynamically adjusted. Through extensive experiments on benchmark multi-document summarization datasets, we demonstrate the effectiveness of our proposed method over strong published baselines. Finally, we shed light on future research directions and discuss broader challenges of this task using a case study.
Unlike well-structured text, such as news reports and encyclopedia articles, dialogue content often comes from two or more interlocutors, exchanging information with each other. In such a scenario, the topic of a conversation can vary upon progressio n and the key information for a certain topic is often scattered across multiple utterances of different speakers, which poses challenges to abstractly summarize dialogues. To capture the various topic information of a conversation and outline salient facts for the captured topics, this work proposes two topic-aware contrastive learning objectives, namely coherence detection and sub-summary generation objectives, which are expected to implicitly model the topic change and handle information scattering challenges for the dialogue summarization task. The proposed contrastive objectives are framed as auxiliary tasks for the primary dialogue summarization task, united via an alternative parameter updating strategy. Extensive experiments on benchmark datasets demonstrate that the proposed simple method significantly outperforms strong baselines and achieves new state-of-the-art performance. The code and trained models are publicly available via .

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا