كلمة embeddings تلتقط المعنى الدلالي للكلمات الفردية.كيفية سد المعرفة اللغوية على مستوى Word مع تمثيل لغة مستوى الجملة هو مشكلة مفتوحة.تفحص هذه الورقة ما إذا كان يمكن تحقيق تمثيلات مستوى الجملة من خلال بناء قاعدة بيانات جملة مخصصة تركز على جانب واحد من معنى الجملة.إن الجوانب الدلالية الثلاثة المنفصلة الخاصة بنا هي ما إذا كانت الجملة: (1) تقوم (1) بإجراء علاقات سببية، (2) تشير إلى أن شيئين مرتبطين ببعضهما البعض، و (3) يعبر عن معلومات أو معرفة.توفر المصنفات الثلاثة معلومات معرفية حول محتوى الجملة.
Word embeddings capture semantic meaning of individual words. How to bridge word-level linguistic knowledge with sentence-level language representation is an open problem. This paper examines whether sentence-level representations can be achieved by building a custom sentence database focusing on one aspect of a sentence's meaning. Our three separate semantic aspects are whether the sentence: (1) communicates a causal relationship, (2) indicates that two things are correlated with each other, and (3) expresses information or knowledge. The three classifiers provide epistemic information about a sentence's content.
References used
https://aclanthology.org/
Natural Language Inference (NLI) has garnered significant attention in recent years; however, the promise of applying NLI breakthroughs to other downstream NLP tasks has remained unfulfilled. In this work, we use the multiple-choice reading comprehen
Arabic sentiment analysis research existing currently is very limited. While sentiment analysis has many applications in English, the Arabic language is still recognizing its early steps in this field. In this paper, we show an application
on Arabic
This research shows the concept of sentence syntax and the text
syntax and the difference between them, beside their respective
areas .It also tries to specify the obstacles which prevent the
progress of this kind of linguistic lesson in our Arabi
The quality of fully automated text simplification systems is not good enough for use in real-world settings; instead, human simplifications are used. In this paper, we examine how to improve the cost and quality of human simplifications by leveragin
A major challenge in analysing social me-dia data belonging to languages that use non-English script is its code-mixed nature. Recentresearch has presented state-of-the-art contex-tual embedding models (both monolingual s.a.BERT and multilingual s.a.