عادة ما يتم تدريب نماذج اللغات الحالية على استخدام مخطط للإشراف على الذات، حيث يركز التركيز الرئيسي على التعلم في كلمة البرنامج أو مستوى الجملة.ومع ذلك، كان هناك تقدم محدود في توليد تمثيلات مفيدة على مستوى الخطاب.في هذا العمل، نقترح استخدام الأفكار من نظرية الترميز التنبؤية لزيادة نماذج اللغة ذات طراز بيرت مع آلية تسمح لهم بتعلم تمثيلات مناسبة على مستوى الخطاب.نتيجة لذلك، يكون نهجنا المقترح قادرا على التنبؤ بالأحكام المستقبلية باستخدام اتصالات واضحة من أعلى إلى أسفل تعمل في الطبقات المتوسطة للشبكة.من خلال تجربة معايير مصممة لتقييم المعرفة المتعلقة بالحبال باستخدام تمثيلات الجملة المدربة مسبقا، نوضح أن نهجنا يحسن الأداء في 6 من أصل 11 مهام من خلال التميز في كشف علاقة الخطاب.
Current language models are usually trained using a self-supervised scheme, where the main focus is learning representations at the word or sentence level. However, there has been limited progress in generating useful discourse-level representations. In this work, we propose to use ideas from predictive coding theory to augment BERT-style language models with a mechanism that allows them to learn suitable discourse-level representations. As a result, our proposed approach is able to predict future sentences using explicit top-down connections that operate at the intermediate layers of the network. By experimenting with benchmarks designed to evaluate discourse-related knowledge using pre-trained sentence representations, we demonstrate that our approach improves performance in 6 out of 11 tasks by excelling in discourse relationship detection.
References used
https://aclanthology.org/
Learning a good latent representation is essential for text style transfer, which generates a new sentence by changing the attributes of a given sentence while preserving its content. Most previous works adopt disentangled latent representation learn
The success of large-scale contextual language models has attracted great interest in probing what is encoded in their representations. In this work, we consider a new question: to what extent contextual representations of concrete nouns are aligned
Discourse analysis has long been known to be fundamental in natural language processing. In this research, we present our insight on discourse-level topic chain (DTC) parsing which aims at discovering new topics and investigating how these topics evo
This paper describes our approach (ur-iw-hnt) for the Shared Task of GermEval2021 to identify toxic, engaging, and fact-claiming comments. We submitted three runs using an ensembling strategy by majority (hard) voting with multiple different BERT mod
This paper describes the HEL-LJU submissions to the MultiLexNorm shared task on multilingual lexical normalization. Our system is based on a BERT token classification preprocessing step, where for each token the type of the necessary transformation i