Do you want to publish a course? Click here

Much recent work in bilingual lexicon induction (BLI) views word embeddings as vectors in Euclidean space. As such, BLI is typically solved by finding a linear transformation that maps embeddings to a common space. Alternatively, word embeddings may be understood as nodes in a weighted graph. This framing allows us to examine a node's graph neighborhood without assuming a linear transform, and exploits new techniques from the graph matching optimization literature. These contrasting approaches have not been compared in BLI so far. In this work, we study the behavior of Euclidean versus graph-based approaches to BLI under differing data conditions and show that they complement each other when combined. We release our code at https://github.com/kellymarchisio/euc-v-graph-bli.
Knowledge Distillation (KD) is a model compression algorithm that helps transfer the knowledge in a large neural network into a smaller one. Even though KD has shown promise on a wide range of Natural Language Processing (NLP) applications, little is understood about how one KD algorithm compares to another and whether these approaches can be complimentary to each other. In this work, we evaluate various KD algorithms on in-domain, out-of-domain and adversarial testing. We propose a framework to assess adversarial robustness of multiple KD algorithms. Moreover, we introduce a new KD algorithm, Combined-KD, which takes advantage of two promising approaches (better training scheme and more efficient data augmentation). Our extensive experimental results show that Combined-KD achieves state-of-the-art results on the GLUE benchmark, out-of-domain generalization, and adversarial robustness compared to competitive methods.
Terminological consistency is an essential requirement for industrial translation. High-quality, hand-crafted terminologies contain entries in their nominal forms. Integrating such a terminology into machine translation is not a trivial task. The MT system must be able to disambiguate homographs on the source side and choose the correct wordform on the target side. In this work, we propose a simple but effective method for homograph disambiguation and a method of wordform selection by introducing multi-choice lexical constraints. We also propose a metric to measure the terminological consistency of the translation. Our results have a significant improvement over the current SOTA in terms of terminological consistency without any loss of the BLEU score. All the code used in this work will be published as open-source.
We present the GermEval 2021 shared task on the identification of toxic, engaging, and fact-claiming comments. This shared task comprises three binary classification subtasks with the goal to identify: toxic comments, engaging comments, and comments that include indications of a need for fact-checking, here referred to as fact-claiming comments. Building on the two previous GermEval shared tasks on the identification of offensive language in 2018 and 2019, we extend this year's task definition to meet the demand of moderators and community managers to also highlight comments that foster respectful communication, encourage in-depth discussions, and check facts that lines of arguments rely on. The dataset comprises 4,188 posts extracted from the Facebook page of a German political talk show of a national public television broadcaster. A theoretical framework and additional reliability tests during the data annotation process ensure particularly high data quality. The shared task had 15 participating teams submitting 31 runs for the subtask on toxic comments, 25 runs for the subtask on engaging comments, and 31 for the subtask on fact-claiming comments. The shared task website can be found at https://germeval2021toxic.github.io/SharedTask/.
The paper presents experiments in neural machine translation with lexical constraints into a morphologically rich language. In particular and we introduce a method and based on constrained decoding and which handles the inflected forms of lexical ent ries and does not require any modification to the training data or model architecture. To evaluate its effectiveness and we carry out experiments in two different scenarios: general and domain-specific. We compare our method with baseline translation and i.e. translation without lexical constraints and in terms of translation speed and translation quality. To evaluate how well the method handles the constraints and we propose new evaluation metrics which take into account the presence and placement and duplication and inflectional correctness of lexical terms in the output sentence.
In this paper, we present three supervised systems for English lexical complexity prediction of single and multiword expressions for SemEval-2021 Task 1. We explore the use of statistical baseline features, masked language models, and character-level encoders to predict the complexity of a target token in context. Our best system combines information from these three sources. The results indicate that information from masked language models and character-level encoders can be combined to improve lexical complexity prediction.
Aimed at generating a seed lexicon for use in downstream natural language tasks and unsupervised methods for bilingual lexicon induction have received much attention in the academic literature recently. While interesting and fully unsupervised settin gs are unrealistic; small amounts of bilingual data are usually available due to the existence of massively multilingual parallel corpora and or linguists can create small amounts of parallel data. In this work and we demonstrate an effective bootstrapping approach for semi-supervised bilingual lexicon induction that capitalizes upon the complementary strengths of two disparate methods for inducing bilingual lexicons. Whereas statistical methods are highly effective at inducing correct translation pairs for words frequently occurring in a parallel corpus and monolingual embedding spaces have the advantage of having been trained on large amounts of data and and therefore may induce accurate translations for words absent from the small corpus. By combining these relative strengths and our method achieves state-of-the-art results on 3 of 4 language pairs in the challenging VecMap test set using minimal amounts of parallel data and without the need for a translation dictionary. We release our implementation at www.blind-review.code.
Lexical complexity is a highly subjective notion, yet this factor is often neglected in lexical simplification and readability systems which use a ''one-size-fits-all'' approach. In this paper, we investigate which aspects contribute to the notion of lexical complexity in various groups of readers, focusing on native and non-native speakers of English, and how the notion of complexity changes depending on the proficiency level of a non-native reader. To facilitate reproducibility of our approach and foster further research into these aspects, we release a dataset of complex words annotated by readers with different backgrounds.
The mapping of lexical meanings to wordforms is a major feature of natural languages. While usage pressures might assign short words to frequent meanings (Zipf's law of abbreviation), the need for a productive and open-ended vocabulary, local constra ints on sequences of symbols, and various other factors all shape the lexicons of the world's languages. Despite their importance in shaping lexical structure, the relative contributions of these factors have not been fully quantified. Taking a coding-theoretic view of the lexicon and making use of a novel generative statistical model, we define upper bounds for the compressibility of the lexicon under various constraints. Examining corpora from 7 typologically diverse languages, we use those upper bounds to quantify the lexicon's optimality and to explore the relative costs of major constraints on natural codes. We find that (compositional) morphology and graphotactics can sufficiently account for most of the complexity of natural codes---as measured by code length.
Emoji (the popular digital pictograms) are sometimes seen as a new kind of artificial and universally usable and consistent writing code. In spite of their assumed universality, there is some evidence that the sense of an emoji, specifically in regar d to sentiment, may change from language to language and culture to culture. This paper investigates whether contextual emoji sentiment analysis is consistent across Arabic and European languages. To conduct this investigation, we, first, created the Arabic emoji sentiment lexicon (Arab-ESL). Then, we exploited an existing European emoji sentiment lexicon to compare the sentiment conveyed in each of the two families of language and culture (Arabic and European). The results show that the pairwise correlation between the two lexicons is consistent for emoji that represent, for instance, hearts, facial expressions, and body language. However, for a subset of emoji (those that represent objects, nature, symbols, and some human activities), there are large differences in the sentiment conveyed. More interestingly, an extremely high level of inconsistency has been shown with food emoji.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا