Do you want to publish a course? Click here

Neural Machine Translation with Inflected Lexicon

الترجمة الآلية العصبية مع المعجم المصمم

383   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

The paper presents experiments in neural machine translation with lexical constraints into a morphologically rich language. In particular and we introduce a method and based on constrained decoding and which handles the inflected forms of lexical entries and does not require any modification to the training data or model architecture. To evaluate its effectiveness and we carry out experiments in two different scenarios: general and domain-specific. We compare our method with baseline translation and i.e. translation without lexical constraints and in terms of translation speed and translation quality. To evaluate how well the method handles the constraints and we propose new evaluation metrics which take into account the presence and placement and duplication and inflectional correctness of lexical terms in the output sentence.



References used
https://aclanthology.org/
rate research

Read More

Terminological consistency is an essential requirement for industrial translation. High-quality, hand-crafted terminologies contain entries in their nominal forms. Integrating such a terminology into machine translation is not a trivial task. The MT system must be able to disambiguate homographs on the source side and choose the correct wordform on the target side. In this work, we propose a simple but effective method for homograph disambiguation and a method of wordform selection by introducing multi-choice lexical constraints. We also propose a metric to measure the terminological consistency of the translation. Our results have a significant improvement over the current SOTA in terms of terminological consistency without any loss of the BLEU score. All the code used in this work will be published as open-source.
Machine translation usually relies on parallel corpora to provide parallel signals for training. The advent of unsupervised machine translation has brought machine translation away from this reliance, though performance still lags behind traditional supervised machine translation. In unsupervised machine translation, the model seeks symmetric language similarities as a source of weak parallel signal to achieve translation. Chomsky's Universal Grammar theory postulates that grammar is an innate form of knowledge to humans and is governed by universal principles and constraints. Therefore, in this paper, we seek to leverage such shared grammar clues to provide more explicit language parallel signals to enhance the training of unsupervised machine translation models. Through experiments on multiple typical language pairs, we demonstrate the effectiveness of our proposed approaches.
Neural Machine Translation (NMT) approaches employing monolingual data are showing steady improvements in resource-rich conditions. However, evaluations using real-world lowresource languages still result in unsatisfactory performance. This work prop oses a novel zeroshot NMT modeling approach that learns without the now-standard assumption of a pivot language sharing parallel data with the zero-shot source and target languages. Our approach is based on three stages: initialization from any pre-trained NMT model observing at least the target language, augmentation of source sides leveraging target monolingual data, and learning to optimize the initial model to the zero-shot pair, where the latter two constitute a selflearning cycle. Empirical findings involving four diverse (in terms of a language family, script and relatedness) zero-shot pairs show the effectiveness of our approach with up to +5.93 BLEU improvement against a supervised bilingual baseline. Compared to unsupervised NMT, consistent improvements are observed even in a domain-mismatch setting, attesting to the usability of our method.
Many NLP models operate over sequences of subword tokens produced by hand-crafted tokenization rules and heuristic subword induction algorithms. A simple universal alternative is to represent every computerized text as a sequence of bytes via UTF-8, obviating the need for an embedding layer since there are fewer token types (256) than dimensions. Surprisingly, replacing the ubiquitous embedding layer with one-hot representations of each byte does not hurt performance; experiments on byte-to-byte machine translation from English to 10 different languages show a consistent improvement in BLEU, rivaling character-level and even standard subword-level models. A deeper investigation reveals that the combination of embeddingless models with decoder-input dropout amounts to token dropout, which benefits byte-to-byte models in particular.
The neural machine translation approach has gained popularity in machine translation because of its context analysing ability and its handling of long-term dependency issues. We have participated in the WMT21 shared task of similar language translati on on a Tamil-Telugu pair with the team name: CNLP-NITS. In this task, we utilized monolingual data via pre-train word embeddings in transformer model based neural machine translation to tackle the limitation of parallel corpus. Our model has achieved a bilingual evaluation understudy (BLEU) score of 4.05, rank-based intuitive bilingual evaluation score (RIBES) score of 24.80 and translation edit rate (TER) score of 97.24 for both Tamil-to-Telugu and Telugu-to-Tamil translations respectively.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا