تعتبر الرموز التعبيرية (الصور التوضيحية الرقمية الشعبية) في بعض الأحيان كنوع جديد من كود الكتابة المصطنعة والمتسقة عالميا. على الرغم من عالمياتهم المفترضة، هناك بعض الأدلة على أن الإحساس بالرموز التعبيرية، على وجه التحديد فيما يتعلق بالمشاعر، قد يتغير من اللغة إلى اللغة والثقافة إلى الثقافة. تحقق هذه الورقة ما إذا كان تحليل معنويات الرموز التعبيرية السياقية يتوافق على اللغات العربية والأوروبية. لإجراء هذا التحقيق، نحن، أولا، أنشأ معجم الرموز الرموز التعبيرية العربية (ARAB-ESL). بعد ذلك، استغلنا المعجم الرموز التعبيري الأوروبي الأوروبي الحالي لمقارنة المشاعر المنقولة في كل من العائلتين من اللغات والثقافة (العربية والأوروبية). تظهر النتائج أن العلاقة الزوجية بين المعجمين متسقين من الرموز التعبيرية التي تمثل، على سبيل المثال، قلوب، تعبيرات الوجه، ولغة الجسم. ومع ذلك، من أجل مجموعة فرعية من الرموز التعبيرية (تلك التي تمثل الأشياء والطبيعة والرموز وبعض الأنشطة البشرية)، هناك اختلافات كبيرة في المعنويات التي يتم نقلها. ومن المثير للاهتمام أن المستوى العالي للغاية من التناقض قد يظهر بالمواد التعبيرية الغذائية.
Emoji (the popular digital pictograms) are sometimes seen as a new kind of artificial and universally usable and consistent writing code. In spite of their assumed universality, there is some evidence that the sense of an emoji, specifically in regard to sentiment, may change from language to language and culture to culture. This paper investigates whether contextual emoji sentiment analysis is consistent across Arabic and European languages. To conduct this investigation, we, first, created the Arabic emoji sentiment lexicon (Arab-ESL). Then, we exploited an existing European emoji sentiment lexicon to compare the sentiment conveyed in each of the two families of language and culture (Arabic and European). The results show that the pairwise correlation between the two lexicons is consistent for emoji that represent, for instance, hearts, facial expressions, and body language. However, for a subset of emoji (those that represent objects, nature, symbols, and some human activities), there are large differences in the sentiment conveyed. More interestingly, an extremely high level of inconsistency has been shown with food emoji.
References used
https://aclanthology.org/
In the social media, users frequently use small images called emojis in their posts. Although using emojis in texts plays a key role in recent communication systems, less attention has been paid on their positions in the given texts, despite that use
Lexicon plays an essential role in natural language processing systems and
specially the machine translation systems, because it provides the system's
components with the necessary information for the translation process. Although there have been a number of researches in natural language processing field, not enough attention has been given to the importance of the lexicon and specially the Arabic lexicon.
Arabic sentiment analysis research existing currently is very limited. While sentiment analysis has many applications in English, the Arabic language is still recognizing its early steps in this field. In this paper, we show an application
on Arabic
Since their inception, transformer-based language models have led to impressive performance gains across multiple natural language processing tasks. For Arabic, the current state-of-the-art results on most datasets are achieved by the AraBERT languag
Sarcasm detection is one of the top challenging tasks in text classification, particularly for informal Arabic with high syntactic and semantic ambiguity. We propose two systems that harness knowledge from multiple tasks to improve the performance of