Do you want to publish a course? Click here

UNBNLP at SemEval-2021 Task 1: Predicting lexical complexity with masked language models and character-level encoders

unbnlp في مهمة Semeval-2021 1: التنبؤ بالتعقيد المعجمي مع نماذج لغة ملثكة وترميز مستوى الأحرف

331   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

In this paper, we present three supervised systems for English lexical complexity prediction of single and multiword expressions for SemEval-2021 Task 1. We explore the use of statistical baseline features, masked language models, and character-level encoders to predict the complexity of a target token in context. Our best system combines information from these three sources. The results indicate that information from masked language models and character-level encoders can be combined to improve lexical complexity prediction.



References used
https://aclanthology.org/
rate research

Read More

We present our approach to predicting lexical complexity of words in specific contexts, as entered LCP Shared Task 1 at SemEval 2021. The approach consists of separating sentences into smaller chunks, embedding them with Sent2Vec, and reducing the em beddings into a simpler vector used as input to a neural network, the latter for predicting the complexity of words and expressions. Results show that the pre-trained sentence embeddings are not able to capture lexical complexity from the language when applied in cross-domain applications.
This paper describes a system submitted by team BigGreen to LCP 2021 for predicting the lexical complexity of English words in a given context. We assemble a feature engineering-based model with a deep neural network model founded on BERT. While BERT itself performs competitively, our feature engineering-based model helps in extreme cases, eg. separating instances of easy and neutral difficulty. Our handcrafted features comprise a breadth of lexical, semantic, syntactic, and novel phonological measures. Visualizations of BERT attention maps offer insight into potential features that Transformers models may learn when fine-tuned for lexical complexity prediction. Our ensembled predictions score reasonably well for the single word subtask, and we demonstrate how they can be harnessed to perform well on the multi word expression subtask too.
In this paper we describe our participation in the Lexical Complexity Prediction (LCP) shared task of SemEval 2021, which involved predicting subjective ratings of complexity for English single words and multi-word expressions, presented in context. Our approach relies on a combination of distributional models, both context-dependent and context-independent, together with behavioural norms and lexical resources.
Predicting the complexity level of a word or a phrase is considered a challenging task. It is even recognized as a crucial step in numerous NLP applications, such as text rearrangements and text simplification. Early research treated the task as a bi nary classification task, where the systems anticipated the existence of a word's complexity (complex versus uncomplicated). Other studies had been designed to assess the level of word complexity using regression models or multi-labeling classification models. Deep learning models show a significant improvement over machine learning models with the rise of transfer learning and pre-trained language models. This paper presents our approach that won the first rank in the SemEval-task1 (sub stask1). We have calculated the degree of word complexity from 0-1 within a text. We have been ranked first place in the competition using the pre-trained language models Bert and RoBERTa, with a Pearson correlation score of 0.788.
Lexical complexity prediction (LCP) conveys the anticipation of the complexity level of a token or a set of tokens in a sentence. It plays a vital role in the improvement of various NLP tasks including lexical simplification, translations, and text g eneration. However, multiple meaning of a word in multiple circumstances, grammatical complex structure, and the mutual dependency of words in a sentence make it difficult to estimate the lexical complexity. To address these challenges, SemEval-2021 Task 1 introduced a shared task focusing on LCP and this paper presents our participation in this task. We proposed a transformer-based approach with sentence pair regression. We employed two fine-tuned transformer models. Including BERT and RoBERTa to train our model and fuse their predicted score to the complexity estimation. Experimental results demonstrate that our proposed method achieved competitive performance compared to the participants' systems.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا