Do you want to publish a course? Click here

OCHADAI-KYOTO at SemEval-2021 Task 1: Enhancing Model Generalization and Robustness for Lexical Complexity Prediction

Ochadai-Kyoto في مهمة Semeval-2021 1: تعزيز التعميم النموذجي والمتانة لتنبؤ التعقيد المعجمي

285   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

We propose an ensemble model for predicting the lexical complexity of words and multiword expressions (MWEs). The model receives as input a sentence with a target word or MWE and outputs its complexity score. Given that a key challenge with this task is the limited size of annotated data, our model relies on pretrained contextual representations from different state-of-the-art transformer-based language models (i.e., BERT and RoBERTa), and on a variety of training methods for further enhancing model generalization and robustness: multi-step fine-tuning and multi-task learning, and adversarial training. Additionally, we propose to enrich contextual representations by adding hand-crafted features during training. Our model achieved competitive results and ranked among the top-10 systems in both sub-tasks.



References used
https://aclanthology.org/
rate research

Read More

This paper describes team LCP-RIT's submission to the SemEval-2021 Task 1: Lexical Complexity Prediction (LCP). The task organizers provided participants with an augmented version of CompLex (Shardlow et al., 2020), an English multi-domain dataset in which words in context were annotated with respect to their complexity using a five point Likert scale. Our system uses logistic regression and a wide range of linguistic features (e.g. psycholinguistic features, n-grams, word frequency, POS tags) to predict the complexity of single words in this dataset. We analyze the impact of different linguistic features on the classification performance and we evaluate the results in terms of mean absolute error, mean squared error, Pearson correlation, and Spearman correlation.
This paper presents the results and main findings of SemEval-2021 Task 1 - Lexical Complexity Prediction. We provided participants with an augmented version of the CompLex Corpus (Shardlow et al. 2020). CompLex is an English multi-domain corpus in wh ich words and multi-word expressions (MWEs) were annotated with respect to their complexity using a five point Likert scale. SemEval-2021 Task 1 featured two Sub-tasks: Sub-task 1 focused on single words and Sub-task 2 focused on MWEs. The competition attracted 198 teams in total, of which 54 teams submitted official runs on the test data to Sub-task 1 and 37 to Sub-task 2.
Lexical complexity prediction (LCP) conveys the anticipation of the complexity level of a token or a set of tokens in a sentence. It plays a vital role in the improvement of various NLP tasks including lexical simplification, translations, and text g eneration. However, multiple meaning of a word in multiple circumstances, grammatical complex structure, and the mutual dependency of words in a sentence make it difficult to estimate the lexical complexity. To address these challenges, SemEval-2021 Task 1 introduced a shared task focusing on LCP and this paper presents our participation in this task. We proposed a transformer-based approach with sentence pair regression. We employed two fine-tuned transformer models. Including BERT and RoBERTa to train our model and fuse their predicted score to the complexity estimation. Experimental results demonstrate that our proposed method achieved competitive performance compared to the participants' systems.
In this paper we propose a contextual attention based model with two-stage fine-tune training using RoBERTa. First, we perform the first-stage fine-tune on corpus with RoBERTa, so that the model can learn some prior domain knowledge. Then we get the contextual embedding of context words based on the token-level embedding with the fine-tuned model. And we use Kfold cross-validation to get K models and ensemble them to get the final result. Finally, we attain the 2nd place in the final evaluation phase of sub-task 2 with pearson correlation of 0.8575.
In this contribution, we describe the system presented by the PolyU CBS-Comp Team at the Task 1 of SemEval 2021, where the goal was the estimation of the complexity of words in a given sentence context. Our top system, based on a combination of lexic al, syntactic, word embeddings and Transformers-derived features and on a Gradient Boosting Regressor, achieves a top correlation score of 0.754 on the subtask 1 for single words and 0.659 on the subtask 2 for multiword expressions.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا