Do you want to publish a course? Click here

Entity Prediction in Knowledge Graphs with Joint Embeddings

تنبؤ الكيان في الرسوم البيانية المعرفة مع Adgeddings مشترك

299   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Knowledge Graphs (KGs) have become increasingly popular in the recent years. However, as knowledge constantly grows and changes, it is inevitable to extend existing KGs with entities that emerged or became relevant to the scope of the KG after its creation. Research on updating KGs typically relies on extracting named entities and relations from text. However, these approaches cannot infer entities or relations that were not explicitly stated. Alternatively, embedding models exploit implicit structural regularities to predict missing relations, but cannot predict missing entities. In this article, we introduce a novel method to enrich a KG with new entities given their textual description. Our method leverages joint embedding models, hence does not require entities or relations to be named explicitly. We show that our approach can identify new concepts in a document corpus and transfer them into the KG, and we find that the performance of our method improves substantially when extended with techniques from association rule mining, text mining, and active learning.



References used
https://aclanthology.org/
rate research

Read More

Knowledge graph entity typing aims to infer entities' missing types in knowledge graphs which is an important but under-explored issue. This paper proposes a novel method for this task by utilizing entities' contextual information. Specifically, we d esign two inference mechanisms: i) N2T: independently use each neighbor of an entity to infer its type; ii) Agg2T: aggregate the neighbors of an entity to infer its type. Those mechanisms will produce multiple inference results, and an exponentially weighted pooling method is used to generate the final inference result. Furthermore, we propose a novel loss function to alleviate the false-negative problem during training. Experiments on two real-world KGs demonstrate the effectiveness of our method. The source code and data of this paper can be obtained from https://github.com/CCIIPLab/CET.
Interactive machine reading comprehension (iMRC) is machine comprehension tasks where knowledge sources are partially observable. An agent must interact with an environment sequentially to gather necessary knowledge in order to answer a question. We hypothesize that graph representations are good inductive biases, which can serve as an agent's memory mechanism in iMRC tasks. We explore four different categories of graphs that can capture text information at various levels. We describe methods that dynamically build and update these graphs during information gathering, as well as neural models to encode graph representations in RL agents. Extensive experiments on iSQuAD suggest that graph representations can result in significant performance improvements for RL agents.
Knowledge graphs (KGs) are widely used to store and access information about entities and their relationships. Given a query, the task of entity retrieval from a KG aims at presenting a ranked list of entities relevant to the query. Lately, an increa sing number of models for entity retrieval have shown a significant improvement over traditional methods. These models, however, were developed for English KGs. In this work, we build on one such system, named KEWER, to propose SERAG (Semantic Entity Retrieval from Arabic knowledge Graphs). Like KEWER, SERAG uses random walks to generate entity embeddings. DBpedia-Entity v2 is considered the standard test collection for entity retrieval. We discuss the challenges of using it for non-English languages in general and Arabic in particular. We provide an Arabic version of this standard collection, and use it to evaluate SERAG. SERAG is shown to significantly outperform the popular BM25 model thanks to its multi-hop reasoning.
With the recent surge in social applications relying on knowledge graphs, the need for techniques to ensure fairness in KG based methods is becoming increasingly evident. Previous works have demonstrated that KGs are prone to various social biases, a nd have proposed multiple methods for debiasing them. However, in such studies, the focus has been on debiasing techniques, while the relations to be debiased are specified manually by the user. As manual specification is itself susceptible to human cognitive bias, there is a need for a system capable of quantifying and exposing biases, that can support more informed decisions on what to debias. To address this gap in the literature, we describe a framework for identifying biases present in knowledge graph embeddings, based on numerical bias metrics. We illustrate the framework with three different bias measures on the task of profession prediction, and it can be flexibly extended to further bias definitions and applications. The relations flagged as biased can then be handed to decision makers for judgement upon subsequent debiasing.
Recently, end-to-end (E2E) trained models for question answering over knowledge graphs (KGQA) have delivered promising results using only a weakly supervised dataset. However, these models are trained and evaluated in a setting where hand-annotated q uestion entities are supplied to the model, leaving the important and non-trivial task of entity resolution (ER) outside the scope of E2E learning. In this work, we extend the boundaries of E2E learning for KGQA to include the training of an ER component. Our model only needs the question text and the answer entities to train, and delivers a stand-alone QA model that does not require an additional ER component to be supplied during runtime. Our approach is fully differentiable, thanks to its reliance on a recent method for building differentiable KGs (Cohen et al., 2020). We evaluate our E2E trained model on two public datasets and show that it comes close to baseline models that use hand-annotated entities.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا