Do you want to publish a course? Click here

Improving Text Auto-Completion with Next Phrase Prediction

تحسين النص التلقائي مع التنبؤ العبارة التالية

424   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Language models such as GPT-2 have performed well on constructing syntactically sound sentences for text auto-completion tasks. However, such models often require considerable training effort to adapt to specific writing domains (e.g., medical). In this paper, we propose an intermediate training strategy to enhance pre-trained language models' performance in the text auto-completion task and fastly adapt them to specific domains. Our strategy includes a novel self-supervised training objective called Next Phrase Prediction (NPP), which encourages a language model to complete the partial query with enriched phrases and eventually improve the model's text auto-completion performance. Preliminary experiments have shown that our approach is able to outperform the baselines in auto-completion for email and academic-writing domains.



References used
https://aclanthology.org/
rate research

Read More

The quality of fully automated text simplification systems is not good enough for use in real-world settings; instead, human simplifications are used. In this paper, we examine how to improve the cost and quality of human simplifications by leveragin g crowdsourcing. We introduce a graph-based sentence fusion approach to augment human simplifications and a reranking approach to both select high quality simplifications and to allow for targeting simplifications with varying levels of simplicity. Using the Newsela dataset (Xu et al., 2015) we show consistent improvements over experts at varying simplification levels and find that the additional sentence fusion simplifications allow for simpler output than the human simplifications alone.
Graph convolutional networks (GCNs) have been applied recently to text classification and produced an excellent performance. However, existing GCN-based methods do not assume an explicit latent semantic structure of documents, making learned represen tations less effective and difficult to interpret. They are also transductive in nature, thus cannot handle out-of-graph documents. To address these issues, we propose a novel model named inductive Topic Variational Graph Auto-Encoder (T-VGAE), which incorporates a topic model into variational graph-auto-encoder (VGAE) to capture the hidden semantic information between documents and words. T-VGAE inherits the interpretability of the topic model and the efficient information propagation mechanism of VGAE. It learns probabilistic representations of words and documents by jointly encoding and reconstructing the global word-level graph and bipartite graphs of documents, where each document is considered individually and decoupled from the global correlation graph so as to enable inductive learning. Our experiments on several benchmark datasets show that our method outperforms the existing competitive models on supervised and semi-supervised text classification, as well as unsupervised text representation learning. In addition, it has higher interpretability and is able to deal with unseen documents.
Point-of-interest (POI) type prediction is the task of inferring the type of a place from where a social media post was shared. Inferring a POI's type is useful for studies in computational social science including sociolinguistics, geosemiotics, and cultural geography, and has applications in geosocial networking technologies such as recommendation and visualization systems. Prior efforts in POI type prediction focus solely on text, without taking visual information into account. However in reality, the variety of modalities, as well as their semiotic relationships with one another, shape communication and interactions in social media. This paper presents a study on POI type prediction using multimodal information from text and images available at posting time. For that purpose, we enrich a currently available data set for POI type prediction with the images that accompany the text messages. Our proposed method extracts relevant information from each modality to effectively capture interactions between text and image achieving a macro F1 of 47.21 across 8 categories significantly outperforming the state-of-the-art method for POI type prediction based on text-only methods. Finally, we provide a detailed analysis to shed light on cross-modal interactions and the limitations of our best performing model.
Recent studies have shown that a bias in thetext suggestions system can percolate in theuser's writing. In this pilot study, we ask thequestion: How do people interact with text pre-diction models, in an inline next phrase sugges-tion interface and h ow does introducing senti-ment bias in the text prediction model affecttheir writing? We present a pilot study as afirst step to answer this question.
We describe our submissions to the 6th edition of the Social Media Mining for Health Applications (SMM4H) shared task. Our team (OGNLP) participated in the sub-task: Classification of tweets self-reporting potential cases of COVID-19 (Task 5). For ou r submissions, we employed systems based on auto-regressive transformer models (XLNet) and back-translation for balancing the dataset.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا