Do you want to publish a course? Click here

In this paper, we discussed the motion of charged particles in the external fields and the radiation of a system of two action reciprocal charges. Where we find that the motion of each charged particle, or precisely the motion of the moving charged particles in orbits has conical forms, and their foci are located in the center of inertia, and this is compatible with Kepler's problem in determining the motion of the planets. As we have shown, the results obtained are that a system consisting of two identical particles, or of different particles, with the same ratio (e / m) , can not radiate in a dipole approximation, and that the moving charge in a closed orbit continuously radiates energy. The differential cross section of particles scattering was calculated according to the Coulomb law, and the radiation value resulting from the incident of a beam of charged particles was finally calculated on a static charge (the braking radiation), where the radiation energy was found to be inversely proportional to the particle velocity as well as the cube with the radius of the radiation correction, and it is associated with the angle of scattering and the azimuth angle.
This work aims to find the differential scattering cross-section for X-ray scattered by aluminum target with angles in intervals in accordance to both polarization cases ( completely – partly). In addition, the relative scattered intensity and po larization degree have been presented as a function of scattered angles and the extreme values are found for each curve.
This research aims to check the actual performance of the work of the propeller depending on series of results issued from Hamburg basins that are known by RANSE where the arcs analysis and the hydrodynamic characteristics of the propeller work in open water are done by using the commercial program CFD Analysis m by Hydro Comp. Thus, the results were compared with the experimental data and the study of fluently around the different parts of the ship and the definition of resistance values and friction factor CF. These values were compared with those issued by ITTC basins and coincidence was found between those of RANSE and the experimental values in the different stages of study. Therefore, a collection of solutions related to the work of propeller were achieved in addition to the evaluation of the level of interaction and the exchanged effect of the propeller work in different conditions, and the definition of degree of difference resulted from the values of the rotation moment and the factors of advance and control the are resulted from the use of CFD program. The numerical results and the syntheses data were discussed in case of working in open water.
Studying is showed that the amount of exchanging information in the network surprisingly grows due to developing new communication services. But, when data rates increase the optical system performance degrades due to dispersion, which was taken in to account in this research. Where as the reduction of dispersion losses is important in optical networks. Fiber Bragg Grating (FBG) is one of the most important components of optical communication systems, and one of the effective methods used for this goal. This article tests the effect of using FBG as dispersion compensator in optical communication systems, where we simulate optical communication system using FBG. And study the effect of Erbium Doped Fiber Amplifier (EDFA) and FBG and fiber optic parameters on this system performance, and it has been finding the best values of the system parameters. Which the simulation model depended on two Optisystem7 and Matlab software. We evaluate performance through eye diagram and two factors Q, Bit Error Rate (BER).
Increasing data rate in optical communication systems leads to nonlinear electromagnet phenomenon in optical signal along fiber, and causes distortion in it.Thefiber dispersion is a linear phenomenon that causes difficulties toachieve high bit rate a nd distance product.The limiting of nonlinear effects requireslow input power level, but this induces lowsignal to noise ratio. So, we search another solutions. This paper studies Split Step Fourier Transform Algorithm (SSFTM) used to solve partial differential nonlinear Schrödinger equation (NLSE).Then, we use it for simulating optical signal propagating in fiber by using MATLAB program, and designing fiber optic block could add it to MATLAB Simulink Library. Finally ,in this paper, we achieved results for selecting important parameters in single mode fiber for high bit rate, for improving bit error rate and Qcoefficient.
The chromatic dispersion of fiber is a major factor causing distortion of the light signals, and if not being addressed using accurate compensators it will lead to a significant deterioration in the performance of optical system. The value of chr omatic dispersion is not fixed along the fiber, and this necessitates the use of tunable dispersion compensators which need information about the value of dispersion which is done by dispersion monitoring. This research is Interested in analyzing chromatic dispersion technique based on the measuring of clock tone power of transmitted data and which is commensurate with the dispersion of the fiber. We found the relationship between signal frequency with range and accuracy of measurement. Also, the advantage of this technique to provide feedback signal to tunable dispersion compensator. The results show the extent of the improvement made in network performance. VPItransmissionmaker program was used to simulate the technique proposed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا