في حين أن التعلم المناهج الدراسي (CL) حصل مؤخرا على الجر في مهام معالجة اللغة الطبيعية، فإنه لا يزال غير محروم بشكل مناسب. تعمل سابقا على إظهار فعاليتها فقط ولكن تفشل في شرح وتفسير الأعمال الداخلية بالكامل. في هذه الورقة، نقوم بتحليل تعلم المناهج الدراسية في تحليل المعنويات على طول محاور متعددة. تم اقتراح بعض هذه المحاور بواسطة الأعمال السابقة التي تحتاج إلى دراسة أكثر متعمقة. يتطلب هذا التحليل فهم حيث يعمل تعلم المناهج وأين لا يفعل ذلك. تشمل محاور التحليل لدينا صعوبة المهمة على CL، ومقارنة تقنيات سرعة CL، والتحليل النوعي من خلال تصور حركة نتائج الاهتمام في النموذج باعتباره مراحل المناهج الدراسية التقدم. نجد أن تعلم المناهج الدراسية يعمل بشكل أفضل للمهام الصعبة وقد يؤدي حتى إلى انخفاض في الأداء للمهام ذات الأداء الأعلى دون تعلم المناهج الدراسية. نرى أن استراتيجيات المناهج القصيرة المريحة تعاني من تصور حركة النسيان والانتباه بالكارثي داخل سرعة المناهج. هذا يدل على أن تعلم المناهج الدراسية ينهار المهمة الرئيسية الصعبة في مهام فرعية أسهل تم حلها بالتتابع.
While Curriculum Learning (CL) has recently gained traction in Natural language Processing Tasks, it is still not adequately analyzed. Previous works only show their effectiveness but fail short to explain and interpret the internal workings fully. In this paper, we analyze curriculum learning in sentiment analysis along multiple axes. Some of these axes have been proposed by earlier works that need more in-depth study. Such analysis requires understanding where curriculum learning works and where it does not. Our axes of analysis include Task difficulty on CL, comparing CL pacing techniques, and qualitative analysis by visualizing the movement of attention scores in the model as curriculum phases progress. We find that curriculum learning works best for difficult tasks and may even lead to a decrement in performance for tasks with higher performance without curriculum learning. We see that One-Pass curriculum strategies suffer from catastrophic forgetting and attention movement visualization within curriculum pacing. This shows that curriculum learning breaks down the challenging main task into easier sub-tasks solved sequentially.
المراجع المستخدمة
https://aclanthology.org/
تحقق هذه الورقة وتكشف عن العلاقة بين اثنين من التخصصات المتعلقة بآلات التعلم عن كثب، وهي التعلم النشط (AL) وتعلم المناهج الدراسية (CL)، من عدسة العديد من المناهج الرواية.تقدم هذه الورقة أيضا التعلم المناهج الدراسية النشطة (ACL) الذي يحسن AL من خلال ا
غالبا ما تفشل أنظمة الترجمة الآلية في الحفاظ على خصائص أسلوبية وبراغمية مختلفة لنص المصدر (E.G. المشاعر والمشاعر والسمات الجنسانية وغيرها) إلى الهدف وخاصة في سيناريو منخفض الموارد. يمكن أن تؤثر هذه الخسارة على أداء أي مهمة معالجة اللغة الطبيعية المصب
تقدم هذه الورقة المهمة المشتركة 2021 على تحليل المشاعر الأبعاد للنصوص التعليمية التي تسعى إلى تحديد درجة المعنويات ذات القيمة الحقيقية لتعليقات التقييم الذاتي كتبها الطلاب الصينيين في كل من التكافؤ والأبعاد الإثراية.يمثل Valence درجة المشاعر اللطيفة
تحليل المعنويات الفئة في الأساس (ACSA)، والتي تهدف إلى تحديد أساور المشاعر المحبوبة من فئات الارتفاع المناقشات في مراجعات المستخدمين. ACSA صعبة ومكلفة عند إجراءها في تطبيقات عالمية حقيقية، والتي ترجع بشكل رئيسي إلى الأسباب التالية: 1.) وعلم بيانات AC
نحن نستخدم محولات Macbert وضبطها بشكل جيد على المهام المشتركة Rocling-2021 باستخدام بيانات CVAT و CVAS.قارنا أداء ماكبيرت مع اثنين من المحولاتين الآخرين وروبرتا في الأبعاد الإثارة، على التوالي.تم استخدام معامل ماي والارتباط (ص) كمقاييس التقييم.على مج