تحقق هذه الورقة وتكشف عن العلاقة بين اثنين من التخصصات المتعلقة بآلات التعلم عن كثب، وهي التعلم النشط (AL) وتعلم المناهج الدراسية (CL)، من عدسة العديد من المناهج الرواية.تقدم هذه الورقة أيضا التعلم المناهج الدراسية النشطة (ACL) الذي يحسن AL من خلال الجمع بين آل مع CL للاستفادة من الطبيعة الديناميكية لمفهوم المعلومات وكذلك الأفكار البشرية المستخدمة في تصميم الاستدلال المناهج الدراسية.تعرض مقارنة أداء ACL و AL على مجموعة بيانات عامين لمهمة التعرف على الكيان المسماة (NER) فعالية الجمع بين آل و CL باستخدام إطار عملنا المقترح.
This paper investigates and reveals the relationship between two closely related machine learning disciplines, namely Active Learning (AL) and Curriculum Learning (CL), from the lens of several novel curricula. This paper also introduces Active Curriculum Learning (ACL) which improves AL by combining AL with CL to benefit from the dynamic nature of the AL informativeness concept as well as the human insights used in the design of the curriculum heuristics. Comparison of the performance of ACL and AL on two public datasets for the Named Entity Recognition (NER) task shows the effectiveness of combining AL and CL using our proposed framework.
المراجع المستخدمة
https://aclanthology.org/
حققت نماذج تمثيل اللغة المدربة مؤخرا مثل بيرت وروبرتا نتائج مهمة في مجموعة واسعة من مهام معالجة اللغة الطبيعية (NLP)، ومع ذلك، فإنها تتطلب تكلفة حسابية عالية للغاية.يعد تعلم المناهج الدراسية (CL) أحد الحلول المحتملة لتخفيف هذه المشكلة.CL هي استراتيجي
نقترح نقدي علامتي التعلم النشط (CAL)، وهي خوارزمية للتعلم النشطة الجديدة (AL) التي تستغل سلوك النموذج على الحالات الفردية أثناء التدريب كوكيل للعثور على أكثر الحالات إعلامية لوضع العلامات.يستقبل Cal بواسطة خرائط البيانات، التي اقترحت مؤخرا أن تستمد ا
في حين أن التعلم المناهج الدراسي (CL) حصل مؤخرا على الجر في مهام معالجة اللغة الطبيعية، فإنه لا يزال غير محروم بشكل مناسب. تعمل سابقا على إظهار فعاليتها فقط ولكن تفشل في شرح وتفسير الأعمال الداخلية بالكامل. في هذه الورقة، نقوم بتحليل تعلم المناهج الد
لقد أثبتت التعلم المناهج الدراسية، وهي استراتيجية تدريب الآلة التي تغذي حالات التدريب على النموذج من سهولة الصعب، لتسهيل مهمة توليد الحوار. وفي الوقت نفسه، يمكن أن تسفر عن طريقة تقطير المعرفة، منهجية تحويل المعرفة بين المعلمين وشبكات الطلاب دفعة كبير
غالبا ما تفشل أنظمة الترجمة الآلية في الحفاظ على خصائص أسلوبية وبراغمية مختلفة لنص المصدر (E.G. المشاعر والمشاعر والسمات الجنسانية وغيرها) إلى الهدف وخاصة في سيناريو منخفض الموارد. يمكن أن تؤثر هذه الخسارة على أداء أي مهمة معالجة اللغة الطبيعية المصب