ترغب بنشر مسار تعليمي؟ اضغط هنا

مسألة متعددة المجالات يجيب

Multi-Domain Multilingual Question Answering

376   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

الإجابة السؤالية (QA) هي واحدة من أكثر المهام التحدي والآثار في معالجة اللغة الطبيعية.ومع ذلك، ركزت معظم الأبحاث في ضمان الجودة على النطاق المفتوح أو الأبدية في حين أن معظم تطبيقات العالم الواقعي تعامل مع مجالات أو لغات محددة.في هذا البرنامج التعليمي، نحاول سد هذه الفجوة.أولا، نقدم معايير قياسية في مجال QA متعدد اللغات متعددة اللغات.في كل من السيناريوهين، نناقش النهج الحديثة التي تحقق أداء مثير للإعجاب، تتراوح من التعلم من تحويل صفرية إلى التدريب خارج الصندوق مع أنظمة QA المجال المفتوحة.أخيرا، سنقدم مشاكل بحثية مفتوحة أن أجندة الأبحاث الجديدة تشكل مثل التعلم متعدد المهام، وتعلم التحويل عبر اللغات، وتكييف المجال وتدريب نماذج لغة متعددة اللغات المدربة مسبقا مسبقا.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

عند بناء أنظمة الترجمة الآلات، يحتاج المرء في كثير من الأحيان إلى الاستفادة القصوى من مجموعات غير متجانسة من البيانات الموازية في التدريب، والتعامل مع المدخلات بقوة من المجالات غير المتوقعة في الاختبار.جذبت هذا السيناريو متعدد المجالات الكثير من العم ل الحديث الذي يقع تحت المظلة العامة لتعلم النقل.في هذه الدراسة، نشجع الترجمة متعددة المجالات، بهدف صياغة الدوافع لتطوير هذه الأنظمة والتوقعات المرتبطة فيما يتعلق بالأداء.تبين تجاربنا مع عينة كبيرة من أنظمة المجال متعددة أن معظم هذه التوقعات تلتقي بالكاد وتشير إلى أن هناك حاجة إلى مزيد من العمل لتحليل السلوك الحالي لأنظمة المجالات المتعددة وجعلها تمسك بوعودها بالكامل.
تعرف الهند باسم أرض العديد من الألسنة واللهجات. الترجمة الآلية العصبية (NMT) هي النهج الحديث الحالي للترجمة الآلية (MT) ولكنه يعمل بشكل أفضل فقط مع مجموعات البيانات الكبيرة التي تفتقر إليها اللغات الهندية عادة، مما يجعل هذا النهج غير قابل للاستمرار. لذلك، في هذه الورقة، نتعامل مع مشكلة ندرة البيانات من خلال تدريب أنظمة NMT متعددة اللغات متعددة اللغات وغير اللغوية التي تنطوي على لغات ?????? ????????????. نحن نقترح تقنية استخدام علامات المجال واللغة المشتركة في إعداد متعدد اللغات. نرسم ثلاث استنتاجات رئيسية من تجاربنا: (1) تدريب نظام متعدد اللغات عبر استغلال التشابه المعجمي على أساس الأسرة اللغوية يساعد في تحقيق متوسط ​​تحسن إجمالي ?. تساعد الرموز اللغوية على نظام المجال متعدد اللغات في الحصول على تحسين متوسط ​​متوسط ​​? ???? ?????? على أساس الأساس، (3) يساعد المرابط بشكل جيد على تحسين تحسين ?-?.? ???? ?????? للحصول على زوج لغة الاهتمام وبعد
بناء نظام الدعم الفني التلقائي هو مهمة مهمة ولكن التحدي.من الناحية النظرية، للإجابة على سؤال المستخدم في منتدى فني، يتعين على خبير بشري استرداد المستندات ذات الصلة أولا، ثم اقرأها بعناية لتحديد مقتطف الإجابة.على الرغم من النجاح الهائل، فقد حقق الباحث ون في التعامل مع أسئلة النطاق العامة الإجابة (ضمان الجودة)، وقد تم دفع الاهتمام الأقل بكثير مقابل التحقيق الفني في تشاينا.على وجه التحديد، تعاني الأساليب الموجودة من العديد من التحديات الفريدة (I) تتداخل السؤال والإجابة نادرا ما يتداخل بشكل كبير و (2) بحجم بيانات محدود للغاية.في هذه الورقة، نقترح إطارا جديدا لتعلم النقل العميق لمعالجة ضمان الجودة الفنية بشكل فعال عبر المهام والمجالات.تحقيقا لهذه الغاية، نقدم نهجا للتعلم المشترك قابل للتعديل لمهام استدعاء المستندات والقراءة.تجاربنا على Techqa توضح أداء فائق مقارنة بالطرق الحديثة.
تحقق نماذج الرد على الأسئلة النصية الحالية (QA) أداء قوي على مجموعات اختبار داخل المجال، ولكن في كثير من الأحيان القيام بذلك عن طريق تركيب أنماط المستوى السطحي، لذلك فشلوا في التعميم لإعدادات خارج التوزيع. لجعل نظام ضمان الجودة أكثر قوة ومفهومة، نقوم بالنماذج النموذجية في الإجابة كمشكلة محاذاة. نحن نحلل كل من السؤال والسياق إلى وحدات أصغر بناء على التمثيلات الدلالية خارج الرف (هنا، الأدوار الدلالية)، ومحاذاة السؤال إلى مجموعة فرعية من السياق من أجل العثور على الجواب. نقوم بصياغة نموذجنا كإدارة منظمة تنظم، مع درجات المحاذاة المحسوبة عبر Bert، ويمكننا تدريب نهاية إلى نهاية على الرغم من استخدام شعاع البحث عن الاستدلال التقريبي. يتيح لنا استخدامنا للتويات الصريحة استكشاف مجموعة من القيود التي يمكننا حظرها أنواع معينة من السلوك النموذجي السيئ الناشئ في إعدادات المجال عبر. علاوة على ذلك، من خلال التحقيق في الاختلافات في الدرجات عبر الإجابات المحتملة المختلفة، يمكننا أن نسعى لفهم جوانب معينة من المدخلات التي تقدم النموذج لاختيار الإجابة دون الاعتماد على تقنيات تفسير ما بعد المخصص. نحن ندرب نموذجنا على فرقة V1.1 واختبرها على العديد من مجموعات بيانات الخصومة والخروج. تشير النتائج إلى أن طرازنا أكثر قوة من طراز Bert QA القياسي، والقيود المستمدة من درجات المحاذاة تسمح لنا بالتنازل بفعالية من التغطية والدقة بشكل فعال.
تقتصر مقاييس تقييم سؤال الفيديو (VIDQA) على إجابة كلمة واحدة أو اختيار عبارة من مجموعة ثابتة من العبارات.هذه المقاييس تحد من سيناريو تطبيق نماذج VIDQA.في هذا العمل، نستفيد الأدوار الدلالية المستمدة من أوصاف الفيديو لإخفاء عبارات معينة، لإدخال VIDQAP الذي يطرح VIDQA كامرأة تعبئة العبارة.لتمكين تقييم الجمل الإجابة، نحسب التحسين النسبي للإجابة المتوقعة مقارنة بسلسلة فارغة.لتقليل تأثير التحيز اللغوي في مجموعات بيانات VIDQA، نسترجع شريط فيديو له إجابة مختلفة لنفس السؤال.لتسهيل البحث، نقوم ببناء AttactNet-SRL-QA و Charads-SRL-QA ومقاييسهم عن طريق تمديد ثلاث نماذج لغة رؤية.نحن نقوم بإجراء تحليل مكثف ودراسات ablative لتوجيه العمل في المستقبل.الرمز والبيانات عامة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا